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Abstract—Voice, as a convenient and efficient way of informa-
tion delivery, has a significant advantage over the conventional
keyboard-based input methods, especially on small mobile devices
such as smartphones and smartwatches. However, the human
voice could often be exposed to the public, which allows an
attacker to quickly collect sound samples of targeted victims and
further launch voice impersonation attacks to spoof those voice-
based applications. In this paper, we propose the design and
implementation of a robust software-only voice impersonation
defense system, which is tailored for mobile platforms and can
be easily integrated with existing off-the-shelf smart devices. In
our system, we explore magnetic field emitted from loudspeakers
as the essential characteristic for detecting machine-based voice
impersonation attacks. Furthermore, we use a state-of-the-art
automatic speaker verification system to defend against human
imitation attacks. Finally, our evaluation results show that our
system achieves simultaneously high accuracy (100%) and low
equal error rates (EERs) (0%) in detecting the machine-based
voice impersonation attack on smartphones.

I. INTRODUCTION

The proliferation of smartphones and wearable devices have
fostered the booming of voice-based mobile applications [24],
[33], which use human voice as a convenient and non-intrusive
way for communication and command control. Common
functionalities of these applications include traditional voice
over IP (VoIP) (e.g., Skype and Hangouts), trending voice-
based instant messaging (e.g., WeChat, TalkBox, and Skout),
and intelligent digital personal assistant (e.g., Amazon Alexa,
Google Home, Apple’s Siri).

Even for security, voice has also been widely used in many
mobile applications [51], [8] as a convenient and reliable
way of user authentication. For example, WeChat provides
“Voiceprint” [51], an authentication interface that allows users
to log into WeChat by speaking pass-phrases. Baidu, a major
Chinese web services company, also introduced voice-unlock
as a built-in authentication method in their smartphone oper-
ating system [8]. With the exploding market of smart mobile
devices, the voice-based mobile applications are expected to
become even more popular in the next few years [33].

However, unlike other human biometrics, the human voice
could often be exposed to the public. Examples of such
exposure include scenarios where people are present in public
receiving phone calls, or just talking loud in a restaurant. As
such, an attacker could easily “steal” a victim’s voice by just
using handy recorders such as smartphones, by downloading
the audio clips from the victim’s online social networking
website [7], or even by creating and recording a spam call.
Upon the successful collection of enough voice samples, a
high fidelity acoustic model of the victim’s voice can be then
reconstructed with the current advancement in voice process-
ing [25]. Using the victim’s acoustic model, an adversary could
easily convert his voice into the victim’s voice using voice
morphing techniques. With state-of-the-art speech synthesis
techniques (e.g. Adobe Voco [36]), even synthetic speech that
resembles the victim’s voice could be generated using any
provided text.

Because voice is commonly characterized as one of the
unique biometric features for personal authentication [13], an
adversary that can imitate the victim’s voice would quickly
launch voice impersonation attacks to spoof any voice-based
applications [53], [39]. This, in turn, would result in severe
consequences to harm victim’s reputation, safety, and prop-
erty. For example, by spoofing the voice-based authentication
mechanism, the attacker could easily steal private information
from the victim’s smartphone. Furthermore, fake voice calls
or scam voice messages could be used to fraud the victim’s
social contacts.

The traditional methods of defending against the voice
impersonation attacks require an automatic speaker verification
(ASV) system, which employs unique spectral and prosodic
features of a user’s voice for user authentication [2], [40].
However, current ASV systems are far from perfect. While
they are effective in detecting human-based voice imperson-
ation attacks (human voice imitation) [5], [9], they are widely
known for their inability to detect voice replay attacks [53].
Moreover, when detecting voice impersonation attacks, current



ASV systems require a prior knowledge of specific voice
impersonation techniques used by the attacker [29]. Such an
assumption does not necessarily always hold in practice. For
example, one recent work [54] has demonestrated that ASV
alone could be subject to sophisticated machine-based voice
attacks. Hence, more robust designs resilient to both human-
based and machine-based voice impersonation attacks are in
great demand yet to be fully explored.

To build a robust defense system, there are many chal-
lenging barriers to overcome. One of the critical challenges
is to defend against both human-based and machine-based
attacks simultaneously. To achieve this goal, we leverage
the following insights: in machine-based voice impersonation
attacks (such as the replay attack, voice morphing attack, and
voice synthesize attack), an attacker usually needs to use a
loudspeaker (e.g., PC loudspeaker, smartphone loudspeaker,
and earphone) to transform the digital or analog signal into
the sound. The conventional loudspeaker uses magnetic force
to broadcast the sound and leads to the generation of a
magnetic field. Thus, if we can capture this magnetic field by
monitoring the magnetometer reading from the smartphone,
we can leverage it as a key differentiating factor between a
human speaker and a loudspeaker. By carefully integrating
our detection method with the current AVS systems, we can
achieve a much more robust design to defend against all types
of voice impersonation attacks on smartphones.

In addition to defending against attacks launched via con-
ventional loudspeakers, we also consider special cases of
machine-based voice impersonation attacks launched via small
earphones. In such scenarios, the magnetic force emitted can
be too small to be sensed directly by the magnetometer. To
address this challenge, we resort to detecting the channel
size of the sound source, and design a sound field validation
mechanism to ensure that the sound source size is always
close to a human mouth (i.e., not an earphone). By cross-
checking both approaches, together with the careful integration
of an existing AVS system, we can defeat the vast majority of
voice impersonation attacks and significantly raise the level of
security for existing voice-based mobile applications.
Contribution. Our main contributions are as follows:
1) We propose a robust software-only defense system against
voice impersonation attacks, which is tailored for mobile plat-
forms and can be easily integrated with off-the-shelf mobile
phones and systems.
2) We use advanced acoustic signal processing, mobile sens-
ing, and machine learning techniques, and integrate them as a
whole system to efficiently detect voice impersonation attacks.
3) We build our system prototype and conduct comprehensive
evaluations. The experimental results show that our system is
robust and achieves very high accuracy with zero equal error
rates (EER) in defending against voice impersonation.
Organization. In the rest of the paper, we begin with the
background and related work in Section II, followed by the
problem formulation in Section III. Section IV describes
the scheme overview and design details. The implementation

details are presented in Section V. The evaluation results are
in Section VI. We further discuss our solution in Section VII.
Finally, Section VIII concludes this paper.

II. BACKGROUND AND RELATED WORK

Voice-based Mobile Applications. Based on their function-
ality, existing voice-based mobile applications can be divided
into two categories: i) voice communication ii) voice control.
For voice communication, there are VoIP apps and instant
voice message apps. As previously stated, by imitating a
victim’s voice, tone and speaking style, the attacker could
easily launch impersonation attacks that would lead to severe
harm to the victim. On the other hand, the applications in
the second category allow users to use their voice commands
to control the smartphone, using services such as the voice
recognition and assistant and voice authentication. For voice
recognition and assistant, Siri and Google Voice Search (GVS)
are two noteworthy representative systems on iOS and Android
systems, respectively.

In [14], the authors presented a recent threat that uses GVS
application to launch voice-based permission bypassing attack
and steal private user information from smartphones. As for
voice authentication, quite a few mobile apps have adopted
it as a built-in method for user authentication and system
login. Besides the aforementioned WeChat “Voiceprint” [51]
interface, Superlock [20] is another example that utilizes
user’s voice to lock and unlocks the phone. Unfortunately, a
recent study shows that these authentication systems could be
spoofed by an attacker mimicking the voice of the victim [53].
Automatic Speaker Verification (ASV) System. An ASV
system can accept or reject a speech sample submitted by a
user, and verify her as either a genuine speaker or an imposter
[43], [27]. It can be text-dependent (with required utterances
from speakers) or text-independent (able to accept arbitrary
utterances) [10]. Text-independent ASV systems are more flex-
ible and are able to accept arbitrary utterances, i.e., different
languages, from speakers [10]. The text-dependent ASV is
more widely selected for authentication applications, since
it provides higher recognition accuracy with fewer required
utterances for verification. The current practice for building
an ASV system involves two processes: offline training and
runtime verification. During the offline training, the ASV
system uses speech samples provided by the genuine speaker
to extract certain spectral, prosodic (see [2] and [40]) or other
high-level features (c.f. [15] and [35]), to create a speaker
model. Later in the runtime verification phase, the incoming
voice is verified against the trained speaker model.

As shown in Fig. 1, a generic ASV system contains seven
vulnerability points. Attacks at point (1) are the voice im-
personation attacks, where the attacker tries to impersonate
another person by using pre-recorded or synthesized voice
sample before transmitting them into the microphone [23].
Attacks at point (2-6) are the indirection attacks [32], which
are performed within the ASV system. In our paper, we build
our defense system focusing on the first type of the attacks.
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Fig. 1: A generic automatic speaker verification (ASV) system with seven possible attack points. The attack at point 1 denotes
the voice impersonation attacks, whereas the attack at points 2 through 6 denote the indirection attacks.

Voice Impersonation Attack. The voice impersonation attack
implies an attack targeting the ASV system using a pre-
recorded, manipulated or synthesized voice samples to deceive
the system into verifying a claimed identity [29]. The work in
[26] suggests that, even though professional human imperson-
ators are more effective than the untrained, they are still unable
to repeatedly fool an ASV system. To address the human-based
voice impersonation attacks, the work in [5], [9] proposed a
disguise detection scheme. The scheme exploits the fact that
voice samples submitted by an impersonator are less practiced
and exhibit larger acoustic parameter variations. In particular,
[5] claims a 95.8% to 100% detection rate for human-based
impersonation attacks.

Another method of voice impersonation is the machine-
based voice impersonation attack, such as replay attack,
voice synthesis or conversion attack. To launch this type of
attack, the attacker needs to seek help with specific devices
(e.g., microphone, computer and loudspeaker). In [46], the
author shows that an attacker can concatenate speech samples
from multiple short voice segments of the target speaker and
overcome text-dependent ASV systems by launching replay
attacks. Although a few system research papers on developing
replay attack countermeasures have been published [30], [38],
[46], [47], [50], all these systems suffer from high false
acceptance rate (FAR) compared to the respective baselines. In
[4], the authors demonstrate vulnerabilities of ASV systems for
voice synthesis attacks with artificial speech generated from
text input. The work in [42], [55] propose the voice conversion
attack in which the attacker converts the spectral and prosody
features of her own speech in resembling the victim’s. To de-
tect voice synthesis and voice conversion attack, [56] exploited
artifacts introduced by the vocoder to discriminate converted
speech from original speech. A more recent work [3] claims a
method that can detect voice conversion attack effectively by
estimating dynamic speech variability.

The essential difference between our work and previous
studies lies in the method we use for machine-based voice
impersonation detection. We design a more general coun-
termeasure by leveraging smartphone-equipped magnetometer
to detect the magnetic field produced by the conventional

loudspeakers. We then use this physical characteristic of the
conventional loudspeakers to detect machine-based imperson-
ator on smartphones, instead of analyzing the acoustic features
of speech samples.

III. PROBLEM FORMULATION

A. Adversary Model

The voice impersonation attack aims at attacking biometric
identifiers of a system. In our adversary model, an attacker is
able to collect the voice samples of the victim. As mentioned
previously, this can be achieved by the attacker with little
cost, since human voice could often be exposed to the public.
Once an attacker acquires the voice samples, the attacker is
able to use different methods to change their voice biometrics
to appear like the victim. Then, the attacker can perform
spoofed phone calls, or launch replay attacks, voice conversion
attacks and voice synthesis attacks, through voice messaging
and voice authentication applications. Based on the methods
the attacker uses, we divide the voice impersonation attacks
into the following two categories:

1) Machine-based Voice Impersonation Attack. In this
type of attack, the attacker has the ability to leverage computer
and other peripherals (e.g., loudspeaker) to gain the capability
of voice replaying or voice morphing. Therefore, the attacker
can imitate the target’s voice at a high degree of similarity. We
assume the attacker has a permanent or temporary access to the
mobile application’s front-end, which displays the voice-based
I/O interface (e.g., a victim’s mobile phone). Based on the
capability of the attacker, we can further divide the machine-
based voice impersonation attacks into three types.
Type 1: Voice Replay Attack. In this type of attack, the
attacker is able to acquire an audio recording of the target’s
voice prior to the attack. The attacker tries to spoof the speaker
verification system by replaying the voice sample using a
loudspeaker.
Type 2: Voice Morphing Attack. In this type of attack,
the attacker is able to imitate the target’s voice by applying
voice morphing (conversion) techniques. We assume that the
voice spoofing techniques used by the attacker can produce
high-quality output with all details of the human vocal tract.
Moreover, the attacker has the ability to simulate the excitation
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Fig. 2: The architecture of conventional loudspeaker showing
the magnet, coil and cone used for loudspeaker operations.

of the vocal tract naturally. The attacker tries to spoof the
speaker verification system by broadcasting the morphed voice
using a loudspeaker to impersonate the targeted legitimate
user.
Type 3: Voice Synthesize Attack. This type of attacker is
able to synthesize target voice by using the state-of-the-art
speech synthesizers techniques. We assume the attacker is able
to use text-to-speech (TTS) technique to generate the natural-
sounding synthetic speech of the targeted user from any input
texts. The attacker tries to spoof the speaker verification
system by directly broadcasting the synthetic voice using a
loudspeaker.

We note that in the last step of each of the three types
of attacks, a loudspeaker (e.g., PC loudspeaker, smartphone
loudspeaker, etc.) is required to broadcast the processed voice.
Thus, if the differentiation between the voice produced by a
human and by a loudspeaker is clear, we can defend against the
machine-based voice impersonation attacks from the source
validation. The key insight of our design is discussed in the
following section.

2) Human-based Voice Impersonation Attack. This type
of attack, the attacker utilizes the acquired voice sample to
imitate the target’s voice without the help of any computer
or professional devices. In particular, the attacker may use his
voice or could seek help from other people (e.g., someone who
can imitate the target’s voice very closely). To defend against
this type of attack, we utilize the state-of-the-art ASV system
which leverages the acoustic features from the voice samples
to perform voice impersonation attack detection.

B. Key Insights

Our key goal is to differentiate genuine speakers from both
machine-based and human-based impostors on smartphones.
For human-based impostor, there already exist sophisticated
speaker verification systems, such as the open-sourced Bob
Spear verification toolbox developed by Khoury et al. [21],
which has been recognized for its performance in detecting
against human-based impersonation attacks [53], [5], [9].

For the machine-based impersonation attack, the existing
state-of-the-art voice authentication systems can be easily cir-
cumvented by voice replay and conversion tools (e.g., Festvox
[16]), among others. Therefore, relying on the spectral and
prosodic features within the voice to defend against machine-

Head

Smartphone

Moving 
Trajectory

Top-Down View

Fig. 3: A typical use case of our system.

based voice impersonation attacks has been proven ineffective.
Thus, we address this problem from a new perspective.

We note that different from human-based voice imperson-
ation, the machine-based impersonation attack requires the
attacker to convert the digital signal to an audible sound by the
assistance of a loudspeaker. Moreover, most of today’s conven-
tional (dynamic) loudspeakers contain a permanent magnet,
a metal coil behaving like an electromagnet, and a cone to
translate an electrical signal into an audible sound [34], as
shown in Fig. 2. When operating correctly, such a loudspeaker
would naturally produce a magnetic field, originating from
both the permanent magnet fixed inside the speaker, and the
movable coil that creates a dynamic magnetic field when an
electric current flows through it.

Therefore, our key insight is to detect the magnetic field pro-
duced by the conventional loudspeakers. By using the magne-
tometer (compass) in modern smartphones, we can distinguish
between a human speaker and a computer loudspeaker, since
the human vocal tract would not produce any magnetic field.
As we show below, such observations will help us design and
obtain a robust defense system with high accuracy. Moreover,
we use the Spear speaker verification system as a building
block to defend against the human impostor.

C. Use Cases

To successfully leverage our key insight, we require users to
place the smartphone as close as possible to the sound source.
This is because the magnetic field produced by the loudspeaker
can only be detected within a short range. However, the
distance between the smartphone and the sound source is
hard to measure. Therefore, we design non-intrusive use cases
to confine the moving pattern of the smartphone and assist
in measuring the distance. As shown in Fig. 3, our scheme
requires the user first to open our mobile application and
hold the smartphone near his head vertically or horizontally
(a similar interaction model has been adopted by [11]); the
user starts speaking the voice command while moving the
smartphone towards his or her mouth at the same time. Finally,
the user waits for our application to verify his identity. During
this process, our application first collects the acoustic data and
the reading of the inertial sensors, and then feeds them into
the verification pipeline.
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IV. THE PROPOSED SOLUTION

A. System Architecture

As shown in Fig. 4, our system consists of four verifica-
tion components for defending against voice impersonation
attacks: 1) sound source distance verification, 2) sound field
verification, 3) loudspeaker detection, and 4) speaker identity
verification components.

The sound source distance verification component is de-
signed for calculating the distance between the smartphone
and the sound source. It manipulates the smartphone trajectory
recovery algorithm with acoustic and sensory data to recon-
struct the moving trajectory of the smartphone. We utilize
the least-square circle fitting algorithm [17] to calculate the
distance. The purpose of this component is to ensure that the
smartphone is placed close enough to the sound source so that
we can detect the magnetic field created by the loudspeaker
with the smartphone built-in magnetometer.

The sound field verification component is designed for
analyzing the characteristic of the sound field produced by the
sound source. We add this element because the magnetometer
is not sensitive enough to detect magnet in a small size, such
as the magnet inside an earphone. Therefore, we use this
component to detect if the sound is formed and articulated
by a sound source, whose size is close to a human mouth
(i.e., not a loudspeaker).

If the collected dataset passes the second and third tests,
we then use the loudspeaker detection component to perform
further detection. By cross-checking the magnetometer and
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Fig. 6: Received spectrograph of the high-frequency tone while
moving the phone.

motion trajectory data, we are able to verify if the sound is
produced by a human speaker or a loudspeaker. The fourth
component is designed for speaker identity verification, and
is based on analyzing the spectral and prosodic features of
the acoustic data. We leverage the state-of-the-art speaker
verification algorithm to detect human-based voice imperson-
ation attacks. Thus, combining the detection result from the
fourth component with the one from the third component,
we are able to defend against both machine-based voice
impersonation attacks and human-based voice impersonation
attacks on smartphones.

B. Defending Against Machine-Based Voice Impersonation

1) Sound Source Distance Verification: As shown in Fig. 5,
to calculate the distance d between the sound source and the
smartphone, we use speakers, microphones and inertial sensors
to reconstruct the moving trajectory of the smartphone.
Motion Trajectory Reconstruction. As we mentioned before,
we require the user to hold and move the smartphone toward
his mouth while speaking. In the meantime, we collect both
the acoustic data and the inertial sensor data from the smart-
phone. In our system, we adopt a similar phase-based distance
measurement method as in [49] to calculate the distance using
the following steps.

First, we let the smartphone’s speaker generate inaudible
tone in a static high frequency fs ( fs > 16 kHz). Since the
corresponding wavelength of that sound is less than 3 centime-
ter, the movement of the smartphone will significantly change
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Fig. 7: The sound field created by (a) a point sound source
and (b) created by a strip-type sound source.

the phase when it reflects off from the user’s head. Based
on the limitation of the speaker on commodity smartphones,
we select the highest possible frequency using a calibration
method described in [18]. With the high-frequency tone being
broadcasted, the movement of the smartphone will cause phase
change. Fig. 6 shows the received spectrograph of the high-
frequency tone while moving the phone. Since the phase
change is directly related to the moving distance d of the
smartphone, we can easily reconstruct the estimated moving
trajectory and correlate it with the value derived from the
inertial sensor.

Instead of tracking the smartphone in 3D space with free
movement, we set up a pre-defined 2D moving plane. We
assume the smartphone stays in the same plane while moving.
The moving trajectory of the smartphone is approximate to
a straight line, where the smartphone screen always faces
the human’s head while moving. Based on this model, we
can use the time interval between the smartphone direction
change combined with the relative moving speed to estimate
the relative location of the smartphone in a 2D plane. As the
magnetometer reading can result in some error in an indoor
environment [37], we jointly use the magnetometer, gyroscope,
and accelerometer to obtain the direction change ∆ω [31].

By using the pre-defined 2D trajectory model, we can then
set the start location as (0, 0) and keep updating the location
coordinate (xt, yt) by combining the timestamp t, velocity v
and direction ω information. Finally, we can fully reconstruct
the phone’s 2D moving trajectory.

2) Sound Field Verification: In our defense system, we sim-
plify the human voice as an acoustic sound source. Therefore,
the user’s speech is regarded as an acoustic signal broadcast by
the sound source. The amplitude of the acoustic signal, which
is the sound intensity level, can be measured by smartphone’s
microphone. To justify whether the received sound is broadcast
from a human mouth, our system first models the sound field of
the human mouth using the training data. Then, by performing
a binary classification of each set of newly received sound
data, we can verify the result. Therefore, only the sound source
(or sound channel) with a similar size of a human mouth can
be accepted and will be further processed.
Quantifying the Sound Field. The sound field represents the
energy transfer in the air by the acoustic waves. The sound
intensity level can express the energy contained in sound fields.
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Fig. 8: The feature points of the human-mouth sound field
(red circles) and the earphone sound field (blue triangles) after
principal component analysis (PCA).

Fig. 7-(a)(b) shows the sound field created by a point sound
source, and the sound field generated by a strip-type sound
source, respectively. According to [19], the sound field around
the user is affected not only by the vocal tract but also by the
shape of the user’s mouth and head. By allowing users to hold
and horizontally move the phone in front of the sound source,
we can collect a set of sound intensity measurements from
different locations, which are further utilized to quantify the
spatial characteristics of the sound field.
Two Phases in Sound Field Verification. As shown in Fig. 9,
the sound source verification process is divided into two
phases, the training phase and the predicting phase. In the
training phase, we collect several sets of sound intensity as
training data and use them to model the spatial characteristics
of the user’s sound field. While moving the smartphone as
instructed, the user needs to speak the command displayed on
the smartphone’s screen repeatedly. For each round, we build
a feature vector to represent the quantified sound field. Each
feature vector contains multiple datasets, and each dataset is
composed by a tuple of volumes (dB) and the rotation angle
(degree). Specifically, the volume of the sound is measured
by the microphone, and the rotation angle is jointly measured
by the magnetometer, the gyroscope, and the accelerometer
[37]. These feature vectors are then used to train a binary
classifier using the linear Support Vector Machine (SVM) [12]
algorithm. In the prediction phase, we ask users to perform a
similar motion trajectory with the smartphone (as they did
in the training phase). We then submit the newly collected
feature vector to the pre-trained binary classifier and validate
the results. Fig. 8 shows the feature vector of the human mouth
sound field and the earphone sound field after applying the
Principal Component Analysis (PCA) [52]. This shows that
the feature points are easy to be separated, and thus the sound
source size can be correctly classified.

3) Loudspeaker Detection: The goal of the loudspeaker
detection component is to detect the emitted magnetic field.
Unlike human vocal tract, conventional loudspeakers leverage
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magnetic force to transfer the electrical signal into acous-
tic sound. According to the validation mechanism presented
above, two geometric constraints of the sound source and the
smartphone in the submitted trajectory should be satisfied: i)
the smartphone is close enough to the sound source, which
means the distance is within a certain threshold Dt; ii) the size
of the voice channel is close to the human mouth. Therefore,
if an imposter tries to launch a machine-based impersonation
attack using the loudspeaker, we can detect the speaker by
checking the variance of the magnetometer readings.

Fig. 10 shows the polar graph (0◦–180◦) of the magnetic
field reading for a conventional loudspeaker (Logitech LS21).
Note that different loudspeaker may have different structure
appearances as well as the magnetic field distributions. In our
system, we jointly use the absolute value and the changing rate
of magnetic readings to detect the speaker. We set a magnetic
strength threshold Mt and a changing rate threshold βt. Both
values are determined based on our experimental results.

C. Defending Against Human-Based Voice Impersonation

1) Speaker Identity Verification: As part of our defense sys-
tem, we choose the state-of-the-art Spear system as the speaker
identity verification component to defend against human-based

TABLE I: The performance of speaker identity verification
component using the false acceptance rate (FAR).

Test 1
(FAR)

Test 2
(FAR)

UBM 0.0% 0.5%
ISV 0.0% 1.3%

voice impersonation attacks. The Spear system has already
implemented multiple mature speaker verification algorithms
and has been evaluated using several standard voice datasets
(e.g., Voxforge [48], NIST SRE [41] and MOBIO [28]). The
toolchains provided by the Spear system are configurable. We
further choose the Gaussian Mixture Model (GMM) and Inter-
Session Variability (ISV) techniques. Spear has two phases, a
training phase and a testing phase. Both phases require the
voice data as an input. In our design, our application first
collects the genuine user’s voice samples to model the user
using Spear (the voice samples are also used for the sound
source verification), and then uses the trained speaker model
to identify the incoming voice samples.

We evaluate the performance of the Spear system for
defending against human-based voice impersonation attack by
conducting two tests. For the first test, we create a dataset
which consists of five speakers. Each speaker is asked to
pronounce a unique six-digit passphrase for five times. We
then allow the speaker to collect other speakers’ voice samples
and ask them to mimic it. Technically, the Spear system is
for training and testing our data set. As shown in Table I,
the false acceptance rates (FAR) for both of the GMM and
ISV models are all equal to zero, which implies the success
rate of the human-based voice impersonation attack is equal
to zero. For the second test, we use the existing Voxforge
dataset to train the Spear speaker model and test it using the
CMU Arctic Database [22], in which they pronounce the same
utterance when recording. The FAR value for the second test is
significantly low, which confirms that Spear is very robust for
defending against human-based voice impersonation attacks.

V. IMPLEMENTATION

To evaluate and validate the effectiveness of our system,
we build a prototype implemented on several smartphone
testbeds from three different manufactures (shown in Table II),
running Android 4.4 KitKat and one Arch Linux [6] server



TABLE II: Types of smartphones.

Maker Model

Google (LG) Nexus 5
Nexus 4

Samsung Galaxy Nexus

TABLE III: Four categories of output decisions.

Decision
Accept Reject

Genuine Correct Acceptance False Rejction
Impostor False Acceptance Correct Rejection

with Intel(R) Core(TM) Devil’s Canyon Quad-Core i7-4790K
@ 4.00 GHz CPU and 32 GB of RAM.

Our prototype is based on a typical client-server architecture
and can be divided into two parts: 1) a mobile application
running on Android and 2) a server backend deployed in a
virtual private cloud (VPC).

1) Mobile Application. The mobile application allows users
to record and upload acoustic data annotated with inertial
sensory information. We design and implement a simple
graphical user interface (GUI) (Fig. 11) for guiding mobile
users moving the smartphone while speaking the command.

2) Server Backend. The server backend has two main
functionalities: i) handling incoming acoustic and inertial
sensory data, and ii) processing received data and feeding back
the verification decision. Our defense system uses a computer
server configured with Arch Linux and Tornado web server
[44] for parallel data processing.
Handling Incoming Data. We utilize a Tornado web server
to process incoming connection requests. Tornado is a high-
performance asynchronous web server, and it is capable of
receiving and handling data from a larger number of users
simultaneously. Our mobile clients send zipped data to the
Tornado server via a secure web socket protocol and all the
data sent from the users is encrypted to ensure confidentiality.
Data Processing Pipeline. At the server side, we first unzip
the received data and then feed it into a cascade pipeline as
we described in the previous section. Besides, we leverage
the Advanced Python Scheduler (APScheduler) to accelerate
the process of defending against the machine-based voice
impersonation attack. The verification result is directly sent
back to the smartphone through the secure web socket channel.

VI. EVALUATION

A. Methodology

To perform our experiments, we design and build a small
testbed environment with a real loudspeaker and a smartphone
hardware. Because the Spear sub-system can address the
human-based voice impersonation attacks, our evaluation fo-
cuses on the machine-based voice impersonation anti-spoofing
sub-system. Since our method is for differentiating between
a human speaker and a computer loudspeaker, we do not
identify the differences among the voice replay attack, the
voice morphing attack and voice synthesis attack as they all
use the loudspeaker.

Fig. 11: The graphical user interface (GUI) for mobile user for
guiding mobile users moving the smartphone while speaking
the command.

Devices and Tools. We evaluate our system on smartphones.
The models of smartphone testbed for implementing our
system are shown in Table II. Appendix A provides the models
of PC loudspeakers, notebook internal speakers, smartphone
internal speakers, and earphones used in our evaluations.
Performance Metrics. As shown in Table III, our system
contains four possible outcomes, where two are correct and
two are incorrect. To assess the performance of our defense
scheme, we choose the standard automatic speaker verification
metrics, namely, the false acceptance rate (FAR) and the false
rejection rate (FRR). FAR characterizes the rate at which an
attacker is wrongly accepted by the system and considered as
an authorized user. On the other hand, FRR characterizes the
rate at which a true user is falsely rejected by our systems.
Both FAR and FRR are controlled by adjusting the verification
threshold. An attacker can launch a successful attack when
the system confuses a spoofing attempt with a genuine one.
In addition to FAR and FRR, we also measure the equal error
rate (EER), which is the rate at which the acceptance and
rejection errors are identical. To measure the EER for each
test round, we vary the threshold value of each verification
component in the defense scheme. A system with a perfect
accuracy should have a zero EER.
Sound Source Distance. To assess the impact of the sound
source distance in the defense mechanism, we create a test
database which consists of five individual speakers. Each
speaker contributes six groups of voice samples measured at
different distances. We further use the recorded voice samples
to perform machine-based voice replay attack using 25 differ-
ent loudspeakers at various distances. The results coming from
each of our system components are measured and merged. As
shown in Fig. 12 (a), the FAR, FRR, and EER are all zero
when the sound source distance is less than or equal to 6 cm.
This is mainly because when the smartphone is placed very
close to the loudspeaker, the magnetic field of the loudspeaker
heavily interferes with the magnetometer’s reading. Therefore,
we can easily set up a threshold to differentiate the individual
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(b) Magnetic field shielding.

Fig. 12: Impact of sound source distance for (a) No shielding and (b) Magnetic field shielding of our defense scheme. The
FAR, FRR and EER values of our system are all equal to zero when the distance is less than or equal to 6 cm.

(a) Unshielded Magnet (b) Shielded Magnet 

Fig. 13: The magnetic field distribution of: (a) unshielded
magnet and (b) shielded magnet.

speaker and the loudspeaker. From 8 to 10 cm, the magnetic
field emitted from the loudspeaker becomes weaker, and the
FAR rises from zero to approximately 5%. When the distance
between the smartphone and the sound source is larger than 10
cm, the magnetic field emitted from the loudspeaker becomes
feeble, which is hard to differentiate from environmental mag-
netic interferences. Hence, the FAR rises sharply. However,
the FRR remains low within all distance ranges (except at
10 cm) because the individual speaker does not produce the
magnetic field. Thus, it can be correctly distinguished when
there are no environmental magnetic interferences. According
to the evaluation results, we set the sound source distance
threshold Dt to 6 cm for the best system performance.
Magnetic Field Shielding. Unlike the electrical field, the
magnetic field can never be eliminated. One common way to
avoid the emanation of the magnetic field is to use a metal (e.g.
iron) box which covers the magnet. In this way, the magnetic
field travels within the walls of the box and cannot penetrate
the box (shown in Fig. 13). Among all the metals, the Mu-
metal [1] achieves the best performance to shield the magnetic

field. Mu-metal is a nickel-iron alloy, with 77% nickel, 16%
iron, 5% copper, and 2% chromium. It has a high magnetic
permeability that is perfect to shield the magnetic field.

To evaluate our system performance against machine-based
voice impersonation attack using magnetic field shielding,
the test database created from the sound source distance
experiment is utilized. Different from the previous experiment,
we now perform machine-based voice replay attack with
the loudspeaker shielded by the Mu-metal. The results are
measured from each of our system components and combined.
As in Fig. 12 (b), the FAR, FRR, and EER values are equal
to zero when the distance is less than or equal to 6 cm.
This is because the metal box can still be detected by our
system, as the magnetometer can detect both the magnet and
the metal [45]. Moreover, the shielding metal also changes
the sound field distribution of the loudspeaker, so our sound
field validation component is still able to detect the anomaly.
According to the results at 8 cm, the Mu-metal successfully
decreases the magnetic field created by the loudspeaker and
results in a higher FAR (8%) compared to the unshielded
result (5.3%). From 8 to 14 cm, the values of FAR, FER,
and EER increase dramatically as the Mu-metal significantly
decreases the intensity of the magnetic field emanated from the
loudspeaker. Based on these results, our system can be applied
to detect shielded loudspeakers when the distance between the
sound source and the smartphone is less than or equal to 6 cm.
Environmental Magnetic Interference. In order to assess
the impact of environmental magnetic interference, we set up
two test scenarios. First, the success rate of our method is
evaluated when a user is nearby a computer. Same as in the
previous experiments, we collect test data from both legitimate
users and voice impostors with various distances. During the
test, an all-in-one computer (iMac 27”) is put 30 cm away
from the test location. Hence, we expect high electromagnetic
field (EMF) that may cause interference to our system. Before
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(b) In a car.

Fig. 14: The FAR, FRR and EER values of our system with environmental magnetic interference: (a) Near a computer (iMac
27’ Late 2009) and (b) In a car’s front seat (Hyundai Sonata 2012).

Fig. 15: Authentication time comparison.

conducting the experiment, we first measure the EMF radiation
by using an Acoustimeter RF meter (Model AM-10) at the
distance of 30 cm. The results show that the average exposure
level varies from 500 µW/m2 to 2500 µW/m2. As shown
in Fig. 14 (a), the FAR, FRR, and EER values are equal
to zero when the distance is less than or equal to 6 cm.
However, different from previous results, the FRR value rises
sharply (27.8%) while the FAR remains at zero at the distance
of 8 cm. This is mainly because, with the increase of the
distance, the moving trajectories of the smartphone become
closer to the computer screen, and the smartphone is exposed
to heavier EMF radiation. Therefore, the interference from the
EMF affects the reading of the magnetometer and triggers a
false alarm.

Second, we conduct the same experiment in a car’s front
seat (Hyundai Sonata 2012). Since modern cars are equipped
with many electronics, all of these electronics are emitters

of EMF, potentially resulting in a very high level of EMF
interference. As we expected, the evaluation result shown in
Fig. 14 indicates that our method suffers a high FRR (around
45%) at a distance above 4 cm. Even at 4 cm, the FRR is still
near 30%, which is unacceptable in our evaluation. However,
the EERs in all test distances remain at zero. The results
indicate that by adjusting the sensitivity level of the detection
components (in particular, the loudspeaker detection compo-
nent), we can achieve much better FAR and FRR results.
Therefore, one solution could be by letting the smartphone
sense the environment before collecting the data and adjusting
its sensitivity level automatically. We will discuss more details
of this solution later.
Authentication Speed and Usability. We compare the au-
thentication time of our method, WeChat voice print, and
credential based authentications. We recruit 20 volunteers
(non-computer science background). Each of the volunteers
performed ten trials of voice authentication using our system.
In addition to the 200 trials in our system, our volunteers also
performed 200 trials on WeChat voiceprint, as well as 200
trials to log in on WeChat using a traditional password. For
all these experiments, we stop the time counter only when
the authentication result is sent back. We try to minimize
the influence of network latency by redirecting all network
traffic to a local server and record the data transmission time.
The time costs of the three schemes are averaged and plotted
in Fig. 15 (Note that “Time per trial” contains unsuccessful
trials which can be considered as false negatives). This figure
indicates well that our system is only less than a second slower
than the original WeChat voice print method. Moreover, both
approaches are comparable to the traditional credential-based
method.
Various Classes of Speakers. To demonstrate our proposed
defense system is universal, we have selected and tested 25
different conventional loudspeakers ranging from low-end to



Fig. 16: Plastic CAB tube for sound-tube attack.

high-end, including PC loudspeakers, mobile phone internal
speakers, laptop internal speakers, and earphones. For the lack
of space, we omit the make and model information of those
evaluated speakers and the detailed evaluation results. How-
ever, in short, the main result shows that our method can detect
all of these loudspeakers owing to the same structure they
share, all containing a permanent magnet. Thereby, the detec-
tion method should be the same. Besides, the magnetometer
sensor AK8975 used by the smartphone has a sensitivity of
0.3µT/LSB and a measurement range of ±1200µT . On the
other hand, as shown in Fig. 10, the magnetic field strength
emitted by the loudspeakers is usually within the range of
30 − 210µT . Therefore, the magnetic field based detection
mechanism is quite reliable within a short distance.

VII. DISCUSSION

Unconventional Loudspeakers. Different from conventional
loudspeakers which use magnetic force to create sound, some
of the unconventional loudspeakers use an alternative way to
produce a sound wave. These loudspeakers are usually very
costly, and therefore unlikely to be adopted by a large popu-
lation. However, as a defense system, we need to consider all
possible attack vectors. We take the Electrostatic Loudspeaker
(ESL) as an example of unconventional loudspeakers which
does not produce a magnetic field. An electrostatic loudspeaker
(ESL) consists of two metal grids with a plastic diaphragm.
The diaphragm constantly charges a fixed positive voltage and
creates a strong electrostatic field around it. It generates sound
by the metal grids which are electrodes. Without utilizing the
electrodynamic method to create sound, this type of speaker
does not create a magnetic field. However, this kind of speaker
can still be detected by magnetometer as the metal grids
generate the magnetic interference. We notice that this type
of loudspeakers usually has a larger size, which can also be
detected by the sound field verification component. Another
example is the Piezoelectric speakers which the electric current
in the piezo crystal generates a movement (piezo effect) which
produces the sound. Although it is already used by some
phones, such speakers typically do not have good audio quality
at the current stage.
Sound-tube Attacks. We further test our system against the
sound-tube attacks. In this experiment, we ask volunteers
to use several different size plastic CAB tubes (shown in
Fig. 16) as “sound tube” and a loudspeaker to launch the
attack. The plastic tube keeps a sufficient distance between
the loudspeaker and the phone, and also transmits sound to
break our sound field verification mechanism. However, all
their attempts failed, mainly because replicating a human
sound field using a mechanical device is hard to achieve.

Furthermore, the attacker needs to cancel out sound resonance
effect in the tube and simulate the shape of the mouth, which
requires very sophisticated structure design.
Adaptive Thresholding. All four verification components in
our defense scheme leverage thresholding to validate the input.
We manually set the thresholds to achieve the best possible
performance (FAR, FRR, EER) in a normal usage scenario.
However, for some particular usage scenarios where the user
is exposed to a high electromagnetic field (EMF) radiation,
e.g., near a computer or in a car, adaptive thresholding may
produce better results. As a future work, we propose the
following solution: i) when encountering high environmental
EMF radiation, we ask users to calibrate the smartphone
by monitoring the environment for a few seconds, and ii)
we calculate the average environmental magnetic interference
level and adjust the threshold for each verification component
adaptively. However, the design of this function should be with
caution as it is possible to trick the application by training it
at a high EMF environment, and then using the loudspeaker
in a low EMF environment.
Dual Microphones. Certain smartphones like Nexus 4 have
two microphones, and one of them is usually used for noise
cancellation. To further improve the usability of our system,
in the future we plan to utilize the dual microphones to
reduce the required moving distance. The main idea is to
measure the sound level difference (SLD) feature between
the two microphones of the device. We then use sound
volumes information with the SLD feature to perform sound
field verification. Because different types of smartphones offer
different dual-microphone layouts, we also need to investigate
the estimation method for automatically setting the sound field
verification parameters.

VIII. CONCLUSIONS

This paper presents a robust software-only voice imperson-
ation defense system tailored for smartphones and is readily
deployable on existing mobile platforms. Our solution lever-
ages the fact that the loudspeaker used in the machine-based
voice impersonation attack has special physical charactertis-
tics, i.e., it generates a magnetic field. We exploit this insight
by non-intrusively requiring the user to place the smartphone
near the sound source for detection and use the magnetometer
to differentiate the human speaker and the loudspeaker. The
prototype of our defense scheme achieves a nearly perfect
accuracy and zero equal error rates in detecting the machine-
based voice impersonation attack on smartphones. The exper-
iment results show that our solution is capable of defeating
the vast majority of voice impersonation attacks. Furthermore,
our system significantly raises the level of security for existing
voice-based mobile applications.
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APPENDIX A
MODELS OF LOUDSPEAKERS USED FOR EVALUATION

TABLE IV: Makers and Models of Loudspeakers Used for
Evaluation

Maker Model
Logitech 7 Watts RMS (FTC) 2.1 Stereo Speaker System LS21
Klipsch - 2-Way Indoor/Outdoor Speakers KHO-7
Insignia - 2-Way Indoor/Outdoor Speakers NS-OS112
Sony - Portable Bluetooth Speaker SRSX2/BLK
Bose - SoundLink Mini Bluetooth Speaker PINK
Bose - 151 SE(R) Environmental Speakers 151 SE
Yamaha - Natural Sound 5” Outdoor Speakers NS-AW190BL
Pioneer - 5-1/4” Floor Speaker SP-FS52
HP - 2.0 Speaker System D9J19AT
GPX - 2.1 Speaker System HT12B
Coby - 2.1 Home Audio Speaker System CSMP67
Acoustic Audio - AA2101 AA2101
Macbook Pro (Mid 2012) Internal Speaker A1286
Macbook Air (Mid 2012) Internal Speaker A1466
iMac (Late 2009) Internal Speaker MB952XX/A
HP 6510b Internal Speaker GM949
Toshiba - Satellite Internal Speaker C55-B5101
Dell - Inspiron 5000 Series Internal Speaker I5558-2571BLK
Apple iPhone 6 Plus Smartphone Internal Speaker A1524
Apple iPhone 5S Smartphone Internal Speaker A1533
Apple iPhone 4S Smartphone Internal Speaker A1387
LG Nexus 5 Smartphone Internal Speaker LG-D820
LG Nexus 4 Smartphone Internal Speaker LG-E960
Samsung Galaxy S Headset Earphones EHS44
Apple White 3.5mm Connector EarPods MD827LL/A


