
ShmCaffe: A Distributed Deep Learning Platform
with Shared Memory Buffer for HPC Architecture

Shinyoung Ahn†‡, Joongheon Kim∗, Eunji Lim‡, Wan Choi‡, Aziz Mohaisen§, and Sungwon Kang¶
†Dept. Info. & Comm. Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
‡High Performance Computing Group, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea

∗School of Computer Science and Engineering, Chung-Ang University, Seoul, Korea
§Department of Computer Science, University of Central Florida, Orlando, FL, USA

¶School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
E-mails: syahn@etri.re.kr, joongheon@cau.ac.kr, ejlim@etri.re.kr,
wchoi@etri.re.kr, mohaisen@ucf.edu, sungwon.kang@kaist.ac.kr

Abstract—One of the reasons behind the tremendous success
of deep learning theory and applications in the recent days is
advances in distributed and parallel high performance computing
(HPC). This paper proposes a new distributed deep learning
platform, named ShmCaffe, which utilizes remote shared memory
for communication overhead reduction in massive deep neural
network training parameter sharing. ShmCaffe is designed based
on Soft Memory Box (SMB), a virtual shared memory frame-
work. In the SMB framework, the remote shared memory is used
as a shared buffer for asynchronous massive parameter sharing
among many distributed deep learning processes. Moreover, a
hybrid method that combines asynchronous and synchronous
parameter sharing methods is also discussed in this paper for
improving scalability. As a result, ShmCaffe is 10.1 times faster
than Caffe and 2.8 times faster than Caffe-MPI for deep neural
network training when Inception v1 is trained with 16 GPUs.
We verify the convergence of the Inception v1 model training
using ShmCaffe-A and ShmCaffe-H by varying the number of
workers. Furthermore, we evaluate scalability of ShmCaffe by
analyzing the computation and communication times per one
iteration of deep learning training in four convolutional neural
network (CNN) models.

I. INTRODUCTION

In modern artificial intelligence research, Deep Neural Net-
work (DNN), an approach introduced to improve machine
learning performance even with complicated input data fea-
tures, is getting a lot of attention in academia and industry. The
power of DNN has been verified through many applications,
especially in visual perception where it showed even better
accuracy than the human vision system. The success of deep
learning in the areas of voice recognition and visual object
recognition is based on the availability of (i) massive training
data set and (ii) distributed and parallel high performance
computing (HPC) architectures. Especially, general purpose
graphic processing units (GPGPUs) clearly have played an
important role in HPC architecture [1], [2], [3], [4].

Even though it is possible to build more accurate learn-
ing models with more training data and larger/deeper DNN
models, the computation requirement increases exponentially
with the multiplication of model sizes and training data
volumes [5], [6]. The large computations cannot be handled in
a single machine. Thus, such models require distributed deep

learning platforms which manage high performance computing
resources [8].

In distributed deep learning platforms, the workers, which
conduct distributed DNN training, should frequently share
massive DNN training parameters. This sharing introduces
communication overhead and such an overhead increases when
we have larger DNN models and more workers. When the
communication overhead is high, the waiting time of the
computation processors, such as CPU and GPU, in compu-
tation nodes increases. Therefore, distributed deep learning
platforms should have functions for massive parameter sharing
for communication overhead reduction.

In this paper, a distributed deep learning parallel processing
architecture based on remote shared memory is proposed.
The proposed architecture achieves communication overhead
reduction and, therefore, can be utilized in high performance
computing clusters that are connected via Infiniband intercon-
nection networks. In addition, it uses remote direct memory
access (RDMA), eliminating communication for data copy
operations between application-level buffer and kernel-level
buffer. Our approach directly stores deep learning parameters
(initially stored in local machine memory) in remote node
memory, and thus it can achieve deep learning parameter
sharing among workers with reduced communication over-
heads. The architecture we propose in this paper is named to
ShmCaffe, as it is an extension to Caffe, a widely architecture
used in image classification, object detection, and localiza-
tion. ShmCaffe provides efficient massive parameter sharing
that enables communication overhead reduction. ShmCaffe’s
performance is comparable to BVLC Caffe [7] and other
MPI-based deep learning platforms such as Caffe-MPI1 and
MPICaffe.

The rest of this paper is organized as follows. Section II
presents the related work and Section III explains system
architecture, components, distributed deep learning platforms,
shared memory allocation methods, and asynchronous dis-
tributed parameter updates. Section IV shows the performance
evaluation results. Section V concludes this paper.

1https://github.com/Caffe-MPI/Caffe-MPI.github.io



II. RELATED WORK

Deep learning is one of machine learning techniques based
on artificial neural network (ANN), which allows machines to
learn by simulating a human’s biological neurons. The ANN
models are evolving from basic deep neural network (DNN)
composed of only full-connected layers where all features
between the adjacent layers are fully connected, to convolu-
tional neural network (CNN) specialized for image recognition
and object detection, and to recurrent neural network (RNN)
suitable for time-series data training and learning.

The deep learning is a repetition of the feed forward process
and the back propagation process. The feed forward process
calculates feature values and objective functions from the input
layer to the output layer through several hidden layers and
outputs the result. The back propagation process modifies the
weight of each layer from the output layer to the input layer
through the hidden layer, reflecting the error (the difference
between the result of the feed-forward and the correct answer).
The weights that are modified during the training process are
updated repeatedly until the error is minimized. In distributed
deep learning, all computers must exchange their learning with
others by sharing the updated weights.

As parallel processing techniques for distributed DNN
training, there are data parallelism and model parallelism.
Data parallelism divides the training data into deep learning
workers, which conduct distributed DNN training [1]. Model
parallelism is a way where workers train a part of a model
for the same data. Generally, data parallelism is widely used,
but the model parallel method is used when it is difficult to
train a big model in a single node or a single GPU due to
limited memory size. In cuda-convnet2, a data-model hybrid
parallelism is also used: the approach performs data paral-
lelism for the convolution layer and uses model parallelism
for the fully-connected layer [3], [4], [5], [9]. In this paper,
we propose fast distributed training methods based on data
parallelism.

For distributed DNN training, it is necessary to share each
explored parameter among distributed workers. The parameter
update can be done synchronously or asynchronously. The
synchronous method aggregates deep learning gradients by
sending the gradients to the parameter server or by mutually
exchanging them among deep learning workers per each
training iteration and updates the weights. The asynchronous
method is a way in which the parameter server updates
the global weight whenever gradient arrives from a worker,
without aggregating all the gradients arriving late or early
from the distributed workers. The synchronous method has
a large aggregation overhead because there is a variation in
the training time of each deep learning worker. However,
since the asynchronous method can eliminate such aggregation
overhead, it can train DNN quickly without sacrificing the
accuracy.

The Gradient Descent (GD) is the most commonly used
optimization method for training DNN. Mini-batch Stochastic
GD (SGD) differs from GD in that it only uses a gradient

learned from arbitrarily sampled data, not a gradient learned
from the entire data [10]. The SGD method is suitable for pro-
cessing large data sets. SGD is also used for distributed DNN
training. In Synchronous SGD (SSGD), distributed workers
calculate their gradients from their mini-batch data and then
each worker or parameter server aggregate the gradients to
update the global weight.

Asynchronous SGD (ASGD) is one of the most widely used
asynchronous distributed variants of SGD. The ASGD has
been proposed to address the disadvantage of SSGD; namely,
workers have to wait until the slowest worker finishes calcu-
lating gradient [11], [12]. The ASGD algorithm has proven
to converge on convex problems [13]. However, it does not
guarantee a linear speed performance as the number of workers
increases. ASGD also is limited in improving the training
performance due to the delayed gradient problem [14]. ASGD
uses a parameter server to share parameters asynchronously
between workers.

The elastic averaging SGD (EASGD) method was proposed
to maximize the benefits of DNN exploration. It allows each
deep learning worker to maintain its own model replica as
in any other ASGD methods. The distributed training is
performed by updating the global model with the moving
average [12]. In this method, unlike the ASGD method, the pa-
rameter server and the workers exchange the weight parameter
learned by them and calculate the difference between the two
weight vectors, thereby updating their own weight parameters
by adding the scaled difference to it. This method performs
better than the Downpour SGD by reducing the delay time
of global weight updating between the parameter server and
local workers.

There are various distributed deep learning frameworks,
such as Hogwild, Dogwild, DistBelief, and Adam. Hogwild
showed that distributed deep learning workers handling sparse
gradients can train DNN through the asynchronous SGD in a
shared memory architecture without locking [15]. The Dog-
wild framework extended the Hogwild to propose an architec-
ture that supports deep learning parameter sharing through a
proprietary read/write to a global distributed parameter buffer.
It implemented asynchronous SGD by extending parallelism
in the Caffe library [7], [16]. The DistBelief framework
proposed the Downpour SGD, which supports a large number
of model replicas as a variant of the asynchronous SGD
and Sandblaster batch optimization technique which supports
various distributed models [9]. Each deep-learning worker can
train weights at different rates to make the most of computing
and network resources. In particular, one can use the resources
of a heterogeneous HPC system, consisting of CPUs and GPUs
of unequal specifications, to take advantage of the maximum
computational power.

The parameter server is an essential component of ASGD.
Separate dedicated parameter servers are placed; otherwise the
master worker acts as a parameter server. The parameter server
allocates a memory area for storing global parameters in its
own local memory, updates global parameters with parameters
sent periodically from slave workers and then distributes the



updated global parameters to the slave workers. Distributed
platforms such as Petuum and CNTK also use distributed key-
value store developed specifically for parameter servers. The
parameter server provides a flexible coherence model, flexible
scalability, and a continuous fault tolerance [17], [18], [19].

Training deep networks with billions of parameters using
tens of thousands of CPU cores was found unscalable and
cost ineffective for training large scale DNNs [5], [9], [20].
As GPU’s computational power has improved to much more
than ten times that of CPU, deep learning using multiple GPUs
has been studied [21]. In addition, some hardware accelerators,
including FPGAs and Intel Xeon Phi processors, as well as
GPUs, can be used for DNN training [22].

III. SHMCAFFE

A. Architecture

We developed ShmCaffe, a distributed deep-learning plat-
form that uses remote shared memory for parameter sharing,
by extending BVLC Caffe (version 1.0.0) [7]. ShmCaffe does
not only provide the ASGD among all workers, but also
provides a hybrid method that combines Inter-node Asyn-
chronous SGD and Intra-node Synchronous SGD. ShmCaffe
runs distributed deep learning workers on multiple nodes,
and exchanges initialization messages between the distributed
processes using MPI. In order to exchange parameters between
the distributed Inter-node workers, the asynchronous EASGD
algorithm is modified to use remote shared memory buffer for
parameter sharing. As shown in Fig. 1, ShmCaffe uses the
Soft Memory Box (SMB) Framework, which provides remote
shared memory facilities[23]. ShmCaffe uses Caffe as a deep
learning computation library with very small modifications.
The distributed training manager performs initialization of
the distributed processing using the MPI programming model
and performs parameter exchange handling using the remote
shared memory library provided by the SMB library.

Fig. 1: High-level architecture of ShmCaffe

ShmCaffe uses BVLC Caffe’s deep-learning computation
algorithm without modification and includes the Shared mem-
ory based Elastic Averaging SGD (SEASGD) algorithm,
which we propose in this paper. The first MPI process (rank =

0) is responsible for creating remote shared memory buffers,
distributing shared memory generation key, and initializing
parameter as master worker. The other MPI process (rank 6=
0) is a set of slave workers that allocate the remote shared
memory buffer created by the master worker as shown in
Fig. 2. ShmCaffe supports all hyper-parameters supported
by Caffe and additionally supports two hyper-parameters:
update interval and moving rate. The update interval is a
hyper-parameter indicating how frequently to update global
weight parameters. The moving rate is moving averaging rate;
a scaling factor used when workers update the global and local
weights.

B. Virtual Shared Memory Framework

To accelerate the communication speed among the dis-
tributed deep learning workers, we have developed a virtual
shared memory framework, SMB, from scratch except the
Infiniband Communication Module, which was developed
through the modification of open source Reliable Datagram
Sockets (RDS) included in linux kernel main line. The SMB
framework allows remote shared memory (RSM) buffers to
be used between processes distributed across multiple nodes,
allocates the granted memory of the memory providing node
on the high-speed RDMA-enabled network as a shared mem-
ory buffer, read and/or write remote shared memory buffer by
the RDMA mechanism. SMB provides APIs to the application
process to exchange control messages, such as remote shared
memory allocation/deallocation, RDMA Read/Write to the
assigned RSM, accumulation between remote shared memory
segments, and update notification.

Fig. 2 shows the process of creating shared memory buffers
among distributed deep-learning workers and sharing parame-
ters through it. The master worker uses the SMB API to create
shared memory buffers on the SMB server. Once the creation
of a shared memory buffer is completed, the master worker
broadcasts the SHM key for the shared memory buffer to the
other workers that want to share it. The workers receiving the
SHM key send a shared memory allocation request with the
memory size and the SHM key to the SMB server, and the
SMB server provides the access key for the assigned shared
memory buffer. This key is the Infiniband remote key that
enables remote machine to access directly the shared memory
with RDMA. Once the sharing procedure is completed, the
shared memory buffers of the SMB server can be shared
between the distributed deep learning workers.

C. Elastic Averaging SGD with Shared Memory

Fig. 3 shows the mechanism of SEASGD (Shared memory
based EASGD), the asynchronous parameter update method
based on the remote shared memory framework (SMB) used
by ShmCaffe. Namely it shows how parameters and training
progress information are shared, updated between workers and
how control message is exchanged between SMB and workers.
In Fig. 3, one worker trains DNN from the deep learning data.
A worker is an MPI process or a thread that train a model
replica. The deep learning data is assigned to all workers



Fig. 2: Allocating remote shared memory

without duplication. Each worker calculates gradients on one
mini-batch, updates local weight parameters from the gradients
first, reads the global parameters, and updates local weights
second from the global weights.

Fig. 3: SEASGD: Shared memory based EASGD

Weights are exchanged between the parameter server and
the workers when using the EASGD scheme. EASGD is more
efficient than the Downpour SGD, in which the weight update
is performed by the parameter server. In the EASGD method,
the weight update is performed by both the worker and the
parameter server. In the Downpour SGD method, workers
send the gradient learned by them to the parameter server,
and the parameter server updates the global weights based on
the received gradients (1) and distributes the updated global
weights to all workers. In (1), Wg denotes global weights, η
the learning rate, and Gx denotes gradient of worker x.

W ′g = Wg − ηGx (1)

On the other hand, the worker using the EASGD method
updates the local weight from local gradient learned by itself
after the training of each minibatch in (2). The updated local
weight and the global weight are exchanged between workers
and the parameter server, and they update their own weight
based on the difference of exchanged weight. Equation (3) is
the second weight update formula in the workers, and (4) is
the weight update formula in the parameter server. As workers
use the learning rate (η) when updating the local weight in (2),
the moving averaging rate (α) is used as in (3) and (4).

W ′x = Wx − ηGx (2)
W ′′x = W ′x − α (Wx −Wg) (3)
W ′g = W ′g + α (Wx −Wg) (4)

ShmCaffe use the SGD optimizer of Caffe to update
the local weight. ShmCaffe workers calculate weight incre-
ment (∆Wx) in (5) and update the local weights (6). The
workers store the weight increment in the shared buffer of
the SMB server, and updates the global weights (Wg) by
accumulating the weight increment into the global weights
of the SMB server (7). This is because the SMB server
does not provide the parameter update logic which parameter
servers provide(it provides shared memory buffer and simple
accumulation functionality between shared memory buffers).

∆Wx = α(W ′x −Wg) (5)
Wx
′′ = Wx

′ −∆Wx (6)
Wg
′ = Wg + ∆Wx (7)

D. Hybrid SGD

ShmCaffe can reduce inter-node network traffic and provide
model performance improvements through synchronous SGD
between Intra-node GPUs. Currently, ShmCaffe uses a single
SMB server. Because the communication bandwidth of the sin-
gle SMB server is bound to the bandwidth of the network inter-
face, the communication overhead increases significantly when
training large-scale models with many workers. ShmCaffe
groups workers assigned to the same node as shown in Fig. 4.
The same group of workers aggregates gradients (Ggrp x)
using ncclAllReduce provided by the NVIDIA NCCL library,
and then update the local weight (Wgrp x) from the aggregated
gradients. Next, the root worker of the same worker group
asynchronously updates the global parameters on the SMB
server using SEASGD. The root worker updates the local
weight (Wgrp x) from the global parameter and broadcasts the
updated weight (Wgrp x”) to other workers of the same group.
In the Hybrid SGD (HSGD), the role of the master worker is
performed by the root worker of Master Worker Group1 in
Fig. 4.

E. Aligning Termination of All Workers

ShmCaffe provides additional ways to adjust the learning
progress of workers to increase utilization of computation
resources by aligning the training end time. Even if ASGD-
based workers train a DNN by using the same GPUs exclu-
sively, deviations in computation time between deep learning



Fig. 4: HSGD: a combination of SSGD and SEASGD

workers will occur. This deviations occurs because workers
share the system bus, file system I/O, and network bandwidth.
BVLC Caffe terminates training by specifying the number
of iterations rather than terminating when the predetermined
accuracy or loss is reached. It is difficult for all workers
to finish training at the same time. All workers that have
completed the specified training iterations must wait for the
slowest worker to finish its training while occupying GPU.

Therefore, a coordinator is needed. When a master worker
performs this role, each distributed deep learning worker must
report to the master the iteration count it completed, and
the master worker should have separate threads to collect
and adjust progress information for every worker. ShmCaffe
can share progress information between distributed workers
through the shared memory provided by SMB.

Fig. 5: RSM allocation and global parameter update

ShmCaffe workers share training progress information

(∀Iter, Iterx) through the SMB shared memory buffer (con-
trol info. in Fig. 3 and Fig. 4). According to this shared
progress information, each worker can finish training almost
at the same time by adjusting the number of learning iterations
according to the predetermined criteria. The predefined criteria
are: 1) all workers finish training when the master worker
terminates, 2) all workers finish training according to the time
of the worker who finishes first, 3) all worker finished when the
average number of iterations of all workers reach the specified
number of iterations.

F. Use of Shared Memory Buffer at SMB Server

In the SEASGD scheme, the shared memory for parameter
is allocated as shown in Fig. 5. The global weight parameter
(Wg) buffer created in the SMB server is shared by all deep
learning workers. Each worker allocates a shared memory
buffer (∆Wx) at the SMB server to store the weight increment
computed from the difference between its local weight and
the global weight. This buffer is not shared among the other
workers. The values of ∆Wx are accumulated to the global
weight buffer (Wg), as shown in Fig. 5. Because each worker
can read and write parameter from and to (∆Wx) exclusively,
the parameters can be shared at high speed by making full use
of the physical performance provided by Infiniband.

G. SEASGD Procedures in ShmCaffe

Fig. 6 shows the procedures of SEASGD training im-
plemented in ShmCaffe. Worker x spawns a thread, up-
date thread, which updates global weight parallelly while
main thread execute deep learning. The spawned up-
date thread is blocked until it is waked up by main thread.

When the training begins, the local weight will be updated
from the global weight before the training, then the deep
learning will be performed with the updated weight, and
also the local weight is updated with the calculated gradient
during the iteration by the Worker x main thread. Thus, each
worker’s main thread reads the global weight (Wg) at the start
point of every iteration (T1) and updates the local weight by
calculating weight increment from the difference between the
global weight and the local weight (T2). Next, main thread
wakes up the update thread to hide the communication time of
global weight update (T3), the worker’s main thread trains a
mini-batch and calculates gradient (T4), and finally updates the
local weight (T5). This procedure is repeated for the specified
iterations.

In the Fig. 6, reading global weight and update local weight
operations (T1 + T2) by the main thread and writing/updating
global weight operations (T.A1 T.A4) by the update thread
should be mutually exclusive. When the update thread is
waked up, then it first acquire lock and stores the weight
increment into the shared memory of the SMB server (T.A1)
and sends a global weight accumulation request to the SMB
server (T.A2). The SMB server exclusively processes the cu-
mulative update requests of global weights from each worker
(T.A3) and notifies them of the result. When the update thread
receive the result form SMB server (T.A4), it releases the lock



and waits for next wake-up signal from the main thread. If
the updating global weight by the update thread takes longer
time than the training(T4) and updating local weight(T5) of the
main thread, then the main thread is blocked before (T2) until
update thread wakes it up(T.A5). As described, ShmCaffe
does not hide the time of reading the global weight from
the time of computation, because the learning performance
deteriorates due to the delayed (or stale) parameter problem.

Fig. 6: SEASGD procedures for asynchronous training

IV. EXPERIMENTAL STUDY

A. System Setup

For an intensive experimental study and performance eval-
uation, 6 SuperMicro 4028GR-TRT2 servers were used, with
the following specifications. Each server is equipped with
2 socket Intel Xeon CPU (E5-2690 v4, 14 cores, 2.3GHz),
128GB DDR4-2400MHz/ECC memory, and 4 Nvidia GPUs
(GTX Titan X pascal). A memory server is also used, which
is equipped with 2 socket Intel Xeon CPU (E5-2609 v2, 4
cores, 2.5GHz), 256GB DDR3-1866MHz memory, and one
Mellanox Infiniband switch. Each server has one 56Gbps FDR
Infiniband host channel adapter (HCA). For utilizing the high
performance computing system, Ubuntu 14.04-LTS OS (kernel
version 3.13.0-123-generic) is used. As GPU programming
toolkit, CUDA v8.0 (including cudnn 8.0) is used, while
Mvapich2-2.2 is additionally used as an MPI package.

B. Read/Write Bandwidth in a SMB Server

In our system setup, we measured the performance of
Read/Write from/to the allocated shared memory of single
SMB server while the number of processes increases from 2 to
32. The reason why we focus on the Read/Write performance
is due to the fact that the read/write workload is exactly 50%
mixed in the distributed deep learning communications. In
this experiment, each process allocates the shared memory
buffer of 1GB and conducts Read/Write (each 50% mixed)
after the shared memory allocation. Notice that the experiment
is conducted for 10 times. Fig. 7 shows that the aggregated

bandwidth of the Read/Write traffic workload increases up to
6.7 GB/s. If we consider the fact that the maximum bandwidth
of Infiniband HCA is 7GB/s, it can be said that the utilization
of the hardware bandwidth reaches up to 96%. From this point,
we conclude that our SMB server is well designed to leverage
HW performance.

Fig. 7: Read/Write bandwidth in a SMB server

C. ShmCaffe vs. Distributed Deep Learning Frameworks

We evaluate the training performance of one standalone
and three distributed deep learning frameworks (i.e., BVLC
Caffe (1.0), Inspur Caffe-MPI (v1.0), MPICaffe, and our
proposed ShmCaffe) over single-GPU, multi-GPU and multi-
node environments. The details are as follows:
• BVLC Caffe (v1.0.0) [7]: a deep learning library which

was implemented by Berkeley BVLC/BVLR. It is a stan-
dalone library, which runs over single-GPU and multi-
GPU systems. If a multi-GPU setting is used, SSGD is
implemented using NCCL Allreduce library.

• Caffe-MPI (v1.0): an open-source distributed deep learn-
ing platform announced by Inspur; and it implements
SSGD using MPI Send/MPI Recv. It modifies BVLC
Caffe (1.0.0-rc3) and it works as follows: master worker
maintains parameter exchange threads of the number of
slave workers, and each slave worker maintains a sin-
gle parameter exchange thread (star-topology geometry).
The master worker gathers the computed gradients by
slave workers, takes the average of them, updates master
weights, and finally distributes the updated master weights
to slave workers.

• MPICaffe: implemented by us in order to compare its
performance with the proposed ShmCaffe. In MPICaffe,
BVLC Caffe (1.0) is used with MPI in a distributed
manner. Instead of using the NCCL Allreduce library,
which was used for multi-GPU aggregation in Caffe, the
aggregation of gradients from all workers utilizes MPI
Allreduce. In addition, this MPICaffe is a distributed deep
learning platform that makes each worker does SSGD.

The comparison of distributed deep learning platforms was
conducted in the hardware configurations in Table I. As shown
in Table I, each distributed platform has its own hardware
configurations for training. However, in the experiments, the
performance is compared with the number of GPUs that are
actually used for the gradient computation.



TABLE I: HARDWARE FOR DISTRIBUTED DEEP LEARNING
PLATFORMS

Hardware Deep Learning Platforms
Config. Caffe Caffe-MPI MPICaffe ShmCaffe

GPU Server# 1 5 4 4
Total GPU# 1 8(10)/16(20)a 8/16 8/16
NFS Server# 1 1 1 1

Memory Server# 1
a10/20 GPUs used but 8/16 GPUs only used for computing gradient

As training data, ILSVRC 2012 ImageNet dataset (i.e., 1000
classes, 1,331,167 images (among the images, the numbers of
training images and verification images are 1,2811,167 and
50,000)) [24]. The training data was converted to LMDB data
format (256x256 color images, training data: about 240 GB
and verification data: about 10 GB). The minibatch size for
training of Inception v1 model[26] is 60 per worker (i.e., 480
in 8 GPUs and 960 in 16 GPUs) and also the minibatch size of
verification data is set to 64. We assume that the data feeding
bottleneck is negligible because the ShmCaffe prefetches 10
sets of minibatch training data and our NFS server can provide
at least 1.5GB/s of I/O bandwidth with the storage of RAID0
on 8 SSDs. In all the three different cases, base learning rate(η)
is set to 0.1, γ is set to 0.1, momentum is set to 0.9, step size
is set to 4 epochs, and finally the max iteration is set to 15
epochs. In addition, the moving rate and update interval of
ShmCaffe are set to 0.2 and 1, respectively. In this experiment,
the gradient aggregation in the distributed systems uses back-
propagation in all layers, which means that it does not conduct
gradient computations in each DNN layer.

This experiment analyzes the top 5 accuracy and loss vari-
ances during Inception v1 models with 8/16 GPUs during 15
epochs training using four deep learning platforms, i.e., BVLC
Caffe (v1.0.0), Caffe-MPI, MPICaffe, and the proposed Shm-
Caffe (version 1.0). This experiment aims at the computation
speed rather than accuracy, thus training data augmentation is
not applied. In ShmCaffe, the experiment is conducted with
hybrid SGD. In Fig. 8, ShmCaffe reliably converges whereas
it is a little bit lower than the Caffe. ShmCaffe shows a slightly
higher performance rather than Caffe-MPI and MPICaffe when
scaling to 16 GPUs.

The beauty of ShmCaffe is mainly in the training time
reduction. As presented in Fig. 9 and Table II, ShmCaffe train
10.1 times faster than Caffe and 2.8 times faster than Caffe-
MPI when using 16 GPUs. The computation and communica-
tion time of one iteration of training is presented in Fig. 10
where ShmCaffe Communication time is 5.3 time faster than
Caffe-MPI.

TABLE II: INCEPTION V1 TRAINING TIME(15 EPOCHS)
AND SCALABILITY OF DEEP LEARNING PLATFORMS

Training GPU# & Deep Learning Platform
Time & 1 GPU 8 GPUs 16 GPUs

Scalability Caffe CMb MCc SCd CM MC SC
Time(h:m) 22:59 8:39 9:53 3:36 6:24 7:07 2:16

Scalabilitya 1.0 2.7 2.3 6.4 3.6 3.2 10.1
aBaseline: Caffe(1 GPU),bCaffe-MPI,cMPICaffe,dShmCaffe

Fig. 8: Comparison of test accuracy and loss under 8 GPUs
and 16 GPUs (C1: Caffe 1GPU, SCH: ShmCaffe-Hybrid,
CM:Caffe-MPI, MC:MPICaffe)

Fig. 9: Comparison of training time (Inception v1 and 15
Epochs – C1: Caffe 1GPU, CM: Caffe-MPI, MC: MPICaffe,
SC: ShmCaffe)

Fig. 10: Comparison of Computation and Communication time
per 1 iteration (Inception v1 and 15 Epochs – C1: Caffe
1GPU, CM: Caffe-MPI, MC: MPICaffe, SC: ShmCaffe, under
16 GPUs)



D. Asynchronous ShmCaffe vs. Hybrid ShmCaffe

In this section, the performance evaluation, with various
hardware configurations, is presented in asynchronous Shm-
Caffe (ShmCaffe-A) and hybrid ShmCaffe (ShmCaffe-H). In
Fig. 11, the performance evaluation results in terms of accu-
racy and loss are presented. In the case of ShmCaffe-A, which
is used with SEASGD, the accuracy slowly drops when the
number of GPUs increases (up to 8 GPUs), where the training
convergence time is similar to the case with 1 GPU. With
16 GPUs, the accuracy achieved is 79.2% and it shows 5.7%
lower performance than the case with 1 GPU. We can also
observe that the ASGD shows inefficiency when the number
of workers is large. Especially, it can be also observed that
the performance deteriorates when the number of workers is
16 or higher [25]. Fig. 11 presents the performance evaluation
results when moving rate is set to 0.2 and update interval is
set to 1.

With ShmCaffe-H running over 4 GPUs, the performance
evaluation results are presented with 2 nodes where each node
has 2 GPUs. With 8 GPUs, two nodes are used and each node
has 4 GPUs. With 16 GPUs, 4 nodes are used and each node
has 4 GPUs. Note that SSGD is used among GPUs in the
same node, and SEASGD is used among nodes. ShmCaffe-H
achieves 84.0%, 82.7%, and 83.5% accuracy when the number
of utilized GPUs is 4, 8, and 16, respectively. This is similar
to the case of the Caffe with 1 GPU (0.9-2.2% difference). In
Fig. 11, it can be observed that there are no big differences in
terms of loss as well (0.04-0.11 difference).

Fig. 11: Test accuracy and loss: ShmCaffe-A vs. ShmCaffe-H
(Inception v1, 15 epochs)

In Fig. 12, the training time of two different ShmCaffe
modes (i.e., ShmCaffe-A and ShmCaffe-H) are plotted while
the number of GPUs increases (i.e., 2, 4, 8, and 16). The

ShmCaffe-A shows at most 11.5 times faster performance with
16 GPUs than the Caffe with 1 GPU. Note that Caffe with 1
GPU takes around 23 hours for Inception v1 [26] model 15
epochs training. On the other hand, ShmCaffe-H shows at most
10.1 times faster performance. The reason why ShmCaffe-A
can be faster than ShmCaffe-H is as follows. Since ShmCaffe-
A works without synchronization among all GPUs, it can
avoid collisions in training data I/O; and it can eliminate time
consumption for synchronization. Therefore, ShmCaffe-A can
be faster than ShmCaffe-H, which uses SSGD among GPUs
in each node. ShmCaffe-A conducts distributed training using
only SEASGD. We conclude that ShmCaffe-A is suitable
when each node has a single GPU and many nodes are used.
On the other hand, ShmCaffe-H is more suitable when each
node has many GPUs.

Fig. 12: Training time: ShmCaffe-A vs. ShmCaffe-H (Incep-
tion v1, 15 epochs)

E. Computation and Communication per 4 CNNs

Experiment was conducted with the configuration in Ta-
ble III to analyze the computation time and communication
time when training four CNN models in the Table IV with
ShmCaffe-A and ShmCaffe-H. In this experiment, the training
time during 1000 Iterations is measured and averaged to give
computation time and communication time of one iteration.
The communication time is used to capture the time that is not
overlapped with the computation time. In Table III, configu-
ration of ShmCaffe-H is represented by “S” as synchronous
SGD, and “A” for asynchronous SGD (i.e., SEASGD). For
example, 8 (S4×A2) means a configuration composed of 8
GPUs with 2 groups of 4 GPUs. The four GPUs in the
same group update the local weight with the SSGD, and the
two groups asynchronously update the global weight with the
SEASGD. Table IV shows the parameter size and computation
time of 4 CNN models. BVLC Caffe (v1.0.0) [7] is used to
measure the parameter size and the computation time during
the Forward and Backward training of the models.

Fig. 13 shows the comparison of the computation time and
the communication time for the training of 4 CNN models
in Table IV using ShmCaffe-A. We set update interval to 1.
For the Inception v1 model with a relatively small parameter
size, the communication ratio is not high; it is 16.3% when
scaling to 8 GPU, and 26% when scaling to 16 GPUs. For
the Resnet 50 model [27], which has about twice as many



TABLE III: HARDWARE SETUP OF SHMCAFFE-A AND
SHMCAFFE-H

ShmCaffe-A ShmCaffe-H
GPU# Server# GPU# GPU# Server# GPU#

/Server (Config) /Server
1 1 1 4(S4) 1 4
2 2 1 4(S2*A2) 2 2
4 4 1 8(S2*A4) 4 2
8 4 2 8(S4*A2) 2 4

16 4 4 16(S4*A4) 4 4

TABLE IV: PARAMETER SIZE AND COMPUTATION TIME

Model CNN Models
Spec. Inception v1 Resnet 50 Inc res v2a VGG16

Parameters# 13.4 31.8 56.1 138.4
(Million)
Paramter 51.09 121.13 214.08 527.8
size(MB)
Compute 222 210 294 190
Time(ms)
batch size 60 18 6 64

aInception resnet v2

parameters as Inception v1, the communication ratio increased
to 30% and 56% when scaling to 8 GPUs and 16 GPUs,
respectively. If it exceeds 50%, that means the communication
time becomes longer than the computation time.

In the case of Inception resnet v2 [28], which has a rela-
tively large model size and is trained by using bigger images
(320×320 colour images) rather than the other 3 models,
the communication time increases rapidly as the number of
workers increases. In particular, the time of training with
16 GPUs increases rapidly because the communication vol-
ume generated per one iteration of training reaches 6848MB
(214MB× 2× 16). The training time of SEASGD is defined
as follows:

Titer = Tcomp + Tcomm

= max [Tcomp, (Twwi + Tugw)] + Trgw + Tulw
(8)

Equation (8) represents the training time of one iteration
as Titer. Titer is composed of Tcomp and Tcomm, where
Tcomp is the total computation time and Tcomm is the total
communication time in an iteration. Tcomp includes the time of
forward calculation, backward calculation, and updating local
weight from gradients. Twwi represents the time of writing
weight increment (5). Tugw represents the time of updating
global weight (7). Trgw is the time of reading the global
weight. Tulw represents the time of updating local weight
(6). ShmCaffe (v1.0) reads the global weight when starting
each iteration (Trgw), updates the local weight (Tulw) from
the global weight, and performs the learning from the training
data sequentially. Therefore, we cannot marginalize Trgw and
Tulw in Tcomp. Tcomp is overlapped with Twwi+Tugw because
the writing weight increment and updating the global weight is
performed in parallel with computation. If Twwi+Tugw is less
than Tcomp, the time of writing weight increment and updating
global weight is hidden by Tcomp.

The communication time of one iteration when training
VGG16 model[29] is 727.7ms with only 2 GPUs, the total

time of an iteration, 941.8ms, is much larger than the time for
the 2 iterations with 1 GPU, 389.8ms. If the computation time
is relatively short and the parameter size is very large as with
the VGG16 model, it is better to train with a single node than
to scale to multiple nodes.

Fig. 13: Comparison of computation time and communication
time through ShmCaffe-A per 4 models

TABLE V: SHMCAFFE-A: COMPUTATION AND COMMUNI-
CATION TIME PER MODELS

Type CNN Workers#
Models 1 2 4 8 16

Incept v1 257 249.3 250.7 253.4 256.7
Comp. Resnet 50 225 247.4 246.5 253.8 257.3

Inc res v2 443 441.3 441 458.2 474.8
VGG16 194.9 214.1 212.5 212.4 214.3

Incept v1 0 37.2 43.3 49.4 89.5
Comm. Resnet 50 0 66.4 71.9 109.7 330.8

Inc res v2 0 135.7 165 275.5 871.8
VGG16 0 727.7 888.6 1614.8 3254.3

Fig. 14, Table VI compare the computation and communi-
cation time when training four CNN models using ShmCaffe-
H. 4 (S4), for example, represents the result of synchronous
SGD training using 4 GPUs with BVLC Caffe for comparison.
The horizontal axis of the graph indicates the mixed shape
of synchronous SGD and asynchronous SGD as shown in
Table III.

The communication ratio of Inception v1, resnet 50, and
inception resnet v2 models is generally below 30% even
though there are exceptional cases. The ratio of communi-
cation in the Inception v1 model and the Resnet 50 model,
which are relatively small in model size, does not decrease in
contrast with the case of ShmCaffe-A where the time for gra-
dient aggregation for the SSGD between workers in the same



worker group is added. When training Inception resnet v2
model with 16 GPUs, the ratio of communication decreases
from 65% to 30.7% because the volume of communication of
ShmCaffe-H is reduced to 1/4 of that of ShmCaffe-A. Even
though ShmCaffe uses the PCI-E system bus for communica-
tion, the communication time ratio reaches 35% when training
VGG16 model with 4 GPUs on a single machine. It increases
about 80% when using 16 GPUs in 4 machines. In the case
of VGG16 model, multi-node expansion is not suitable, due
to the high communication overhead.

Fig. 14: Computation and communication time through
ShmCaffe-H per 4 models

TABLE VI: SHMCAFFE-H: COMPUTATION AND COMMUNI-
CATION TIME PER MODELS

Type CNN Workers#(S#, A#)a
Models 4(4,0) 4(2,2) 8(2,4) 8(4,2) 16(4,4)

Incept v1 264 261.6 260.9 257 265.8
Comp. Resnet 50 263 279.5 275.8 290.5 278.2

Inc res v2 525 507.4 534.2 565.3 541.8
VGG16 206.3 237 238.6 243 239.1

Incept v1 11 50.4 52.6 85.4 95.5
Comm. Resnet 50 19 93.8 93.4 101.5 104

Inc res v2 40 184.4 199.1 214.7 239.6
VGG16 110 777.8 984.1 829.7 933.9

a(S#,A#) mean (Synchronous workers#, Asynchronous worker groups#)

As shown in Table V and Table VI, the computation time is
almost similar between ShmCaffe-A and ShmCaffe-H. In Fig.
15, ShmCaffe-A and ShmCaffe-H do not show big difference
in communication time of relatively smaller models when 8
GPUs are used. ShmCaffe-H is much better than ShmCaffe-A
in communication time as the DNN parameter size increases
and as it scale out. As a result, ShmCaffe-H performs better

Fig. 15: Communication time per iteration: ShmCaffe-A vs.
ShmCaffe-H

in one iteration time per all models when scaling out to 16
GPUs.

V. CONCLUDING REMARKS

In this paper, we proposed ShmCaffe, a new distributed
deep learning platform that performs large-scale deep learning
at a high speed. ShmCaffe is based on SMB, the remote
shared memory framework, and implements asynchronous
and shared memory based elastic averaging SGD. Instead of
using the parameter server, ShmCaffe allocates remote shared
memory provided by the SMB server as a shared buffer for
parameter sharing. We proposed an asynchronous parameter
update procedure of SEASGD through SMB, and a Hybrid
parameter update method, HSGD, that combines SEASGD and
SSGD.

We evaluated the performance of a single SMB server
that constitutes the underlying infrastructure of the proposed
ShmCaffe and compared ShmCaffe with a few Caffe-based
distributed deep learning platforms such as Caffe, Caffe-MPI,
and MPICaffe to show how well it can train models to
convergence. ShmCaffe shows 10.1 times faster convergence
than Caffe and converge 2.8 times faster than Caffe-MPI when
scaling out 16 GPU workers. We verified the scalability of
ShmCaffe-A and ShmCaffe-H by analyzing computation and
communication time per one iteration of deep-learning on four
CNN models under two operating modes. ShmCaffe removes
the communication overhead from additional memory copying
and protocol processing in the existing communication meth-
ods, and maximizes utilization of high-speed communication
and computational resources to improve the efficiency of deep
learning. As one of future research topics, we have a plan
to improve the performance of the SMB framework by using
multiple SMB servers.

ACKNOWLEDGMENT

This work was supported by ICT R&D program of Ministry
of Science and ICT/Institute for IITP (2016-0-00087, Devel-
opment of HPC System for accelerating Large-Scale Deep
Learning). J. Kim is a corresponding author of this paper.



REFERENCES

[1] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in Proceedings of the International
Conference on Machine Learning (ICML’09), Montreal, Canada, 14-18
June 2009.

[2] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proceedings of the Advances
in Neural Information Processing Systems (NIPS’12), Lake Tahoe, NV,
USA, 3-8 December 2012.

[3] W. Wang, G. Chen, H. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi, K.-
L. Tan, S. Wang, and M. Zhangy, “Deep learning at scale and at
ease, ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 12, no. 4, pp. 69:1–69:25, November 2016.

[4] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv:1404.5997v2, April 2014.

[5] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project Adam:
building an efficient and scalable deep learning training system,” in
Proceedings of the USENIX Conference on Operating Systems Design and
Implementation (OSDI’14), Broomfield, CO, USA, 6-8 October 2014.

[6] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y.
Ng, “On optimization methods for deep learning,” in Proceedings of
the International Conference on Machine Learning (ICML’11), Bellevue,
WA, USA, 28 June - 2 July 2011.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: convolutional architecture for
fast feature embedding,” in Proceedings of ACM Multimedia (MM’14),
Orlando, FL, USA, 3-7 November 2014.

[8] J. Wang and L. Cheng, “DistDL: a distributed deep learning service
schema with GPU accelerating,” in Proceedings of the Asia-Pacific Web
Conference (APWeb’15), Guangzhou, China, 18-20 September 2015.,
Springer LNCS, 9313:793-804.

[9] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M.
Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks,” in Proceedings of the Advances
in Neural Information Processing Systems (NIPS’12), Lake Tahoe, NV,
USA, 3-8 December 2012.

[10] Y. Anzai, Pattern Recognition & Machine Learning, Elsevier, 2012.
[11] X. Lian, et. al., “Asynchronous parallel stochastic gradient for noncon-

vex optimization,” in Proceedings of the Advances in Neural Information
Processing Systems (NIPS’15), Montreal, Canada, 7-12 December 2015.

[12] S. Zhang, A. Choromanska, and Y. LeCun, “Deep learning with elastic
averaging SGD,” in Proceedings of the Advances in Neural Information
Processing Systems (NIPS’15), Montreal, Canada, 7-12 December 2015.

[13] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning
Research, vol. 12, no. 7, pp. 21212159, July 2011.

[14] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu,
“Asynchronous stochastic gradient descent with delay compensation,”
in Proceedings of the International Conference on Machine Learning
(ICML’17), Sydney, Australia, 6-11 August 2017.

[15] F. Niu, B. Recht, C. Re, and S. J. Wrigh, “Hogwild!: a lock-free
approach to parallelizing stochastic gradient descent,” in Proceedings
of the Advances in Neural Information Processing Systems (NIPS’11),
Granada, Spain, 12-15 December 2011.

[16] C. Noel and S. Osindero, “Dogwild! – Distributed Hogwild for CPU &
GPU,” in Proceedings of the Advances in Neural Information Processing
Systems (NIPS) Workshop on Distributed Machine Learning and Matrix
Computations, Montreal, Canada, 12 December 2014.

[17] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning
with the parameter server,” in Proceedings of the USENIX Conference on
Operating Systems Design and Implementation (OSDI’14), Broomfield,
CO, USA, 6-8 October 2014.

[18] E. P. Xing, et. al., “A new look at the system, algorithm and theory
foundations of large-scale distributed machine learning,” Tutorial in ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’15), Sydney, Australia, 10-13 August 2015.

[19] D. Yu, et. al., “An introduction to computational networks and the
computational network toolkit,” Microsoft Research Technical Report
MSR-TR-2014-112, 1 October 2014.

[20] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “On parallelizability of
stochastic gradient descent for speech DNNs,” in Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing
(ICASSP’14), Florence, Italy, 4-9 May 2014.

[21] L. Deng, D. Yu, and J. Platt, “Scalable stacking and learning for building
deep architectures,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’12), Kyoto, Japan,
25-30 March 2012.

[22] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA’15), Monterey, CA, USA, 22-24
February 2015.

[23] S. Ahn and J. Kim and S. Kang,“Poster: A Novel Shared Memory
Framework for Distributed Deep Learning in High-Performance Com-
puting Architecture”, in Proceedings of the 40th IEEE/ACM International
Conference on Software Engineerring (ICSE’18), Gothenburg, Sweden,
May 27 - June 3, 2018

[24] ImageNet Large Scale Visual Recognition Challenge (ILSVRC), http:
//www.image-net.org/challenges/LSVRC/

[25] Onkar Bhardwaj, Guojing Cong, Practical Efficiency of Asynchronous
Stochastic Gradient Descent, 2016 2nd Workshop on Machine Learning
in HPC Environments

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’15), Boston, MA, USA, 7-12 June 2015.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’16), Las Vegas, NV, USA, 26 June - 1
July 2016.

[28] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
in Proceedings of AAAI Conference on Artificial Intelligence (AAAI’17),
San Francisco, CA, USA, 4-9 February 2017.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of the International
Conference on Machine Learning (ICML’15), Lille, France, 6-11 July
2015.

http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/

