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Abstract—Automated Fare Collection (AFC) systems have been
globally deployed for decades, particularly in public transporta-
tion. Although the transaction messages of AFC systems are
mostly transferred in plaintext, which is obviously insecure,
system operators do not need to pay much attention to this issue,
since the AFC network is well isolated from public network (e.g.,
the Internet). Nevertheless, in recent years, the advent of Near
Field Communication (NFC)-equipped smartphones has bridged
the gap between the AFC network and the Internet through Host-
based Card Emulation (HCE). Motivated by this fact, we design
and practice a novel paradigm of attack on modern distance-
based pricing AFC systems, enabling users to pay much less
than actually required. Our constructed attack has two important
properties: 1) it is invisible to AFC system operators because the
attack never causes any inconsistency in the backend database of
the operators; and 2) it can be scalable to large number of users
(e.g., 10,000) by maintaining a moderate-sized AFC card pool
(e.g., containing 150 cards). Based upon this constructed attack,
we developed an HCE app, named LessPay. Our real-world
experiments on LessPay demonstrate not only the feasibility of
our attack (with 97.6% success rate), but also its low-overhead
in terms of bandwidth and computation.

I. INTRODUCTION

Automated Fare Collection (AFC) systems have been glob-
ally deployed for decades to automate manual ticketing and
charging systems, particularly in public transportation networks.
As transit routes in modern cities are usually quite long, most
of today’s AFC systems adopt a distance-based pricing strategy,
where the transit fee is calculated based on the length of the
trip. To date, billions of AFC cards have been issued across
the world.

A typical AFC system leverages a symmetric encryption
method (e.g., based on 3DES [1] or AES algorithm [2]) to
authenticate both the entities and messages involved. When an
AFC card is officially issued, an unchanged unique transaction
key, TK, is written into the card, which will be used to generate
a dynamic session key, SK, and a message authentication code
(or MAC) [3] during the debit phase. Surprisingly, all the other
data (i.e., the data other than TK, SK, and MAC) exchanged
between AFC cards and terminals (i.e., faregates or fareboxes)
are in the plaintext format, which is insecure [4]–[8]. The AFC
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Fig. 1: Architectural overview of our designed attack on an
AFC system. Red arrows denote the tampered messages, which
however never cause inconsistency in the database of the AFC
system.

system operators, nevertheless, need not to worry about such
risky situation, because the AFC network is well isolated from
public networks (e.g., the Internet). Thus, it is quite difficult,
if any attacker wants to hack into the infrastructure of AFC
systems in practice.

Unfortunately, in recent years the advent of Near Field
Communication (NFC)-equipped smartphones has bridged the
gap between the AFC network and the Internet, thus putting
AFC systems in a highly dangerous situation. Nowadays, the
NFC module has become a typical component of mainstream
smartphones such as iPhone 6 and 6s. It operates at the
same frequency (13.56 MHz) and implements the same
communication standard (ISO/IEC 7816 and ISO/IEC 14443)
as those in AFC systems [9]. Moreover, it can work in a
special Host-based Card Emulation (HCE) mode that allows
any Android application to emulate an AFC card and talk
directly to an AFC terminal.

Motivated by the above situation, we design, implement
and test a novel paradigm of attack on modern distance-based
pricing AFC systems. The goal of this study is to investigate
the possibility of paying much less than actually required. As
the basic requirements of launching such attacks, the users only
need to have NFC-equipped smartphones and have installed
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LessPay – our developed HCE app based on our constructed
attack – on their smartphones. Fig. 1 presents a step-by-step
workflow of our constructed attack. In the attack, there are two
important phases: tampering entrance data (Step 1-2 in Fig. 1)
and relay attack on AFC card (Step 4-7 in Fig. 1), which we
outline in the following.

• Phase 1: Tampering entrance data. As shown in Fig. 1,
when a LessPay user wants to have a trip by metro, she
first taps her smartphone on an entrance terminal. Then,
the entrance terminal writes the entrance data into the AFC
card emulated by LessPay, indicating the user’s entrance
station and timestamp. Subsequently, the entrance data is
reported to the cloud of LessPay via a cellular connection
(Step 1 in Fig. 1). After receiving the entrance data, the
cloud periodically sends fake entrance data to the user
(Step 2), in order to minimize the expected fare paid
by her (note that the cloud does not know the user’s
destination). In practice, the period is typically configured
as two minutes and the cellular traffic cost is within tens
of KBs.

• Phase 2: Relay attack on AFC card. When the user
reaches her destination, she taps her smartphone on an
exit terminal, and the exit terminal calculates how much
the user should pay for the trip according to the fake
entrance data (Step 3). Afterwards, the exit terminal sends
a debit message to the emulated AFC card, which is
instantly forwarded to the cloud by LessPay (Step 4). On
the cloud side, this debit message is first relayed to the
physical AFC card corresponding to the emulated AFC
card (Step 5), and then the message authentication code
(MAC) is relayed to the web server (Step 6). Finally, the
web server returns the debit message together with MAC
to LessPay (Step 7) and a transaction log is reported to
the AFC backend by the exit terminal (Step 8). So far,
we finish a typical workflow of our attack. According to
our measurement results, the round trip time from Step
4 to Step 7 is generally within 100 ms, which is totally
acceptable to user’s real-world experience.

At the heart of our attack architecture is an AFC card pool
that maintains a number of physical AFC cards for conducting
relay attacks (i.e., Step 5 and Step 6 in Fig. 1). The success of
relay attacks guarantees two important properties. First, AFC
backend cannot detect any data inconsistent during the process
of our attack, which means our attack is invisible to AFC
system operators. In other words, for an AFC system operator,
the debit & MAC provided by LessPay is indistinguishable
from the ones offered by a normal AFC card. Second, as the
web server (at the cloud side in Fig. 1) tampers both the station
and timestamp information in the entrance data to forge a very
short trip, we only need to maintain a relatively small number
of cards in the pool to serve for a large number of users, e.g.,
150 cards serving for 10,000 users. This is because our users’
very short fake trips can be easily scheduled by the cloud to
totally avoid conflicts.

Root

Card Info
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Bus Data

Metro Data

Transaction History

Fig. 2: Example: File structure of CTC.

As a representative case study, we conducted real-world
attacks to the City Traffic Card (CTC) system in City X, one
of the major cities in China, with tens of millions population.
Specifically, 100 users were recruited and each user randomly
used LessPay to take a subway 40 times a month. During
three-month experiments (from Jan. 10th to Apr. 10th, 2016)
with a total of 12,000 tests, 97.6% tests passed (the failed
tests are owing to the poor quality of cellular connections).
After the experiments, all AFC cards in our card pool still
work well. This demonstrates the feasibility and scalability of
our designed attack. We have reported the attack to several
popular AFC systems including CTC. Nevertheless, there does
not seem to be a good solution to prevent the attack in current
AFC systems.

In summary, this paper makes the following contributions:
• We construct a large-scale invisible attack on AFC systems

with NFC-equipped smartphones, thus enabling users to
pay much less than actually required.

• We develop an HCE app, named LessPay, based on our
constructed attack (detailed in Section III).

• We evaluate LessPay with real-world large-scale experi-
ments, which not only demonstrate the feasibility of our
attack (with 97.6% success rate), but also shows its low-
overhead in terms of bandwidth and computation (detailed
in Section IV).

The rest of this paper is organized as follows. Section II
describes the overview of a typical AFC transaction. Section III
presents how we construct the attack and how we implement
an HCE app, named LessPay, to enable the attack in practice.
Section IV evaluates LessPay through both real-world case
study and overhead measurement. Section V reviews the related
works, and Section VI draws some conclusions.

II. OVERVIEW OF AN AFC TRANSACTION

Before we describe our constructed attack and the developed
app, LessPay, in Section III, this section shows an overview of
the working principle of current AFC transactions, including
stored file structure, entrance protocol, and exit protocol. Note
that entrance and exit protocols provide important insight for
our attack design.

File structure. Among today’s AFC systems, the majority of
AFC cards follow the ISO/IEC 14443 standard. In this standard,
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data in a smart card is stored in a very simple file system,
organized in a hierarchical tree structure. Each file is identified
by its unique file identifier. As an example, Fig. 2 shows the
file structure of CTC. The basic card information including
card number, card type, and expiration is stored under the root
directory. The data involved in the transactions of bus and
metro is stored in the purse directory.

Entrance protocol. When a passenger (with an AFC card)
wants to enter a station, the AFC system needs to execute the
entrance protocol, as shown in Fig. 3, based on the following
three steps.

• First, the station’s terminal requests and reads the basic
information of this passenger’s AFC card, including the
card number, the expiration, and the balance. The terminal
verifies this information, including checking the expiration
and whether the balance is sufficient.

• Second, if the above verification succeeds, the terminal
would try to write the entrance data to the Metro Data
file (just using the metro as an example). However, before
writing the entrance data, the AFC card needs to perform
a one-way authentication to the terminal. As shown in
Fig. 3, the terminal gets a random number R from the AFC
card, and then calculates a MAC by encrypting R with a
pre-installed key1 shared with this AFC card (right-hand
operations in Fig. 5).

• Finally, after generating MAC, the terminal sends the
entrance data with the calculated MAC to the AFC card.
The card performs an external authentication (shown in
Fig. 5): if passed, the entrance data would be written on
the card. On the other hand, the external authentication
works as follows. As shown in Fig. 5 (left-hand), the
AFC card first encrypts the random number R with the
key shared with the terminal. Because the AFC card has
received the terminal’s MAC, which has been computed
by encrypting the same random number R with the same
key (the right-hand operation in Fig. 5), the AFC card
can check whether the terminal’s authentication passes
through comparing the two ciphertext. If the terminal is
fake, the authentication fails.

After the whole protocol is executed, the passenger will be
allowed to enter the station, and her AFC card has been written
her entrance information.

Exit protocol. When the trip is finished, the passenger taps her
card on the exit terminal. The terminal preforms exit protocol,
which is shown in Fig. 4, based on the following two steps.

• First, the terminal reads the same basic information as
the entrance stage, including the card number and the
expiration, as well as the entrance data from the card.
Then, the terminal verifies the above information. If the
verification succeeds, the terminal calculates the fare that

1The key of each card is unique in practice. Instead of storing all keys
(which is obviously impossible), the key of each card is generated using a root
key and its card number. The root key is stored in a so-called SAM module
attached on the terminal. The terminal uses SAM to generate the each-card
key.

Card Terminal
(with SAM)

Read basic info

Success

Request Random Number Verify

Random Number (R)
Calculate

MACEntrance Data (with MAC)

Success

Fig. 3: The entrance protocol.

Card Terminal
(with SAM)

Read basic info &
 entrance data

Success

Debit (with MAC)
Verify &

Calculate fare

Success (with MAC’) Upload

Fig. 4: The exit protocol.

the passenger needs to pay. The verification process is
the same as the first step in the entrance protocol.

• Second, in order to upload the transaction log information
to the AFC backend, the card and terminal need to perform
a mutual authentication with each other. In other words,
besides the authentication to the terminal, in this step
(called debit checking step), the terminal also needs to
check whether the AFC card is emulated or fake. The
process that the card authenticates the terminal is almost
the same as the authentication step in the entrance protocol.
On the contrary, i.e., the terminal authenticating the card,
the AFC card needs to use its private transaction key
TK to generate a session key SK and a MAC’ (generated
using the SK), and then sends them to the terminal for the
authentication. The most important property in this step is:
a fake or emulated AFC card cannot have a transaction
key to pass the authentication.

After the mutual authentication, the terminal uploads the
transaction information to its backend.

III. ATTACK DESIGN AND LESSPAY IMPLEMENTATION

In this section, we first present how we design our attack
(in Section III-A and Section III-B) and the implementation
of the LessPay app (in Section III-C).

As shown in Fig. 1, our attack has six steps (i.e., Step 1-2
and Step 4-7). Step 3 and 8 do not belong to our attack, since
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TABLE I: Metro Entrance Data

# Entrance Data Enter Time Metro Line Station Balance When Entering

1 1512051417043D014C1D 2015-12-05 14:17 4 Station A 75.00

2 1511301135020801B009 2015-11-30 11:35 2 Station B 24.80

3 15112215225E1D01AC0D 2015-11-22 15:22 X Station C 35.00

4 15112009560A11016612 2015-11-20 09:56 10 Station D 47.10

5 15111220090401015203 2015-11-12 20:09 1 Station E 8.50

Generate Random 
Number (R)

Secret 
Key (K)

=?

Accept

Reject

Secret 
Key (K)

Smart Card Terminal

Fig. 5: External authentication, used by the card to validate
the terminal.

they occur on the terminal side and are not controlled by us.
Step 1-2 and Step 4-7 formulate two important phases in our
attack: tampering entrance data (Step 1-2) and relay attack on
AFC card (Step 4-7). We now detail each of the phases.

A. Tampering Entrance Data

In order to tamper the entrance data, we need to know two
important things: 1) the data structure of entrance data, and 2)
the station data, e.g., GPS latitude and longitude coordinates.
In this section, we describe a collection of approaches to infer
the above information.

Collecting entrance data. Instead of collecting entrance
data by physically accessing metro stations, we developed
a lightweight app (different from LessPay app) to specifically
collect data listed in Fig. 2. To attract users to download the
app, the app itself provides useful features including parsing
the balance and transaction histories (which metro line and
when the user rode, as well as the fare) when the user taps
the card on her NFC smartphone. We distributed this app in
Google play. With the agreement of our users, we collected
these anonymous data (the card is innominate) from 97 different
cards.

Obtaining data structure of entrance data. By collecting
the entrance data, we analyze it and try to learn its structure.
For example, Table I lists five items of our collected data. By
observing and cross-checking the data, we find that the metro
entrance data contains the following elements:

• The entrance time (yyMMddhhmm format, 5 bytes2)
• The entrance metro line number (1 byte)
• The entrance station identifier (1 byte)
• The balance when entering the station (little endian in 2

bytes, e.g., 4C1D represents 0x1D4C (7500) cents)
Thus, we obtain the data structure of entrance data, as shown

in Fig. 6.

date & time
(YYMMDDhhmm)

station
line

01 balance

Fig. 6: Data structure of entrance data.

Obtaining station information. Rather than collecting station
data by visiting each station (seems impossible), we found a
third-party application called E-Card Tapper [10], which is able
to parse the transaction histories as well as the trip records and
details. Driven by this finding, we reversed this application
using Apktool [11] and dumped the station data from the inner
SQLite database of E-Card Tapper in order to extract its stored
station information, such as the station identifier.

Besides this basic information on stations, we also need
to infer the GPS latitude and longitude coordinates of each
station. Thus, we get the location coordinates of stations using
Google Maps.

Tampering the entrance data. We now already have enough
information (i.e., entrance data structure and station informa-
tion) to tamper the entrance data. In our LessPay implemen-
tation, as shown in Fig. 1, the web server in the cloud is
responsible for generating the fake entrance data based on
our above collected data. To falsify a piece of valid entrance
data, we simply prepare the legitimate entrance time, station
information, and the balance. In order to minimize the fare,
our cloud will generate the proper entrance data according
to the destination. More details about the implementation of
tampering the entrance data is described in Section III-C.

B. Relay Attack on AFC Card

This phase covers Step 4-7 shown in Fig. 1. During this
phase, our purpose is to try to pass the mutual authentication
in the exit protocol (mentioned in Section II). This is because
our emulated card receives a debit from the terminal, and

2Noted using patterns for formatting and parsing in JDK 1.8.
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the debit is protected by transaction key TK via the generated
session key SK and MAC’ (mentioned in Section II). In practice,
because a contactless smart card is a combination of MCU
(microcontroller unit, like the most popular Intel 8051) and
an RF (radio frequency) module, under the protection of the
firmware in the MCU, the TK is not readable. Therefore, it
is impossible to emulate an AFC card with debit support. In
other words, the challenge in this phase is how we can get a
transaction key TK for our emulated card to make it pass the
mutual authentication.

To address this challenge, we use the physical card equipped
with TK to bypass this obstacle. This physical card is put in
the cloud’s AFC card pool (see Fig. 1), and it corresponds to
the emulated card that receives the debit from the terminal.
In other words, in LessPay, the emulated card should have a
corresponding physical AFC card in the cloud-side pool. Our
intuition here is to make our emulated card act as a “proxy”-
card and make the cloud server together with the physical card
act as a “proxy”-reader. Such a design enables emulated card
to forward the debit to real card (i.e., the physical card) to
generate MAC’, because only that physical card has the needed
transaction key TK.

During Step 4-7 in Fig. 1, the debit message transmitted
by the terminal is first received by the “proxy”-card (i.e., the
emulated card) and relayed the debit to the cloud server. The
cloud server will transmit the debit to a physical AFC card.
Since the message is authenticated by MAC’, the physical card
will assume that it is communicating with a legitimate terminal
and respond normally. Then, the response is forwarded to
LessPay, which will respond to the terminal with the debit
response. Still, the intact message is authenticated by MAC’,
which is identical as a real card, so the terminal can not
distinguish between the physical card and our emulated card.

Using such a relay attack, we are able to overcome the fact
that our emulated card lacks TK. Moreover, the valid MAC’
will not lead any inconsistency.

C. System Implementation

Based on the above two important design phases, we are
now able to present the system implementation, which consists
of a front-end mobile app LessPay and a cloud-side service
(i.e., the cloud in Fig. 1). The LessPay app requires an NFC-
equipped smartphone with Android 4.4 or above. While in the
cloud server side, any regular server or workstation is enough
to meet the requirement.

1) LessPay Implementation: Before HCE techniques are
proposed, a secure element is required to perform the commu-
nication with the NFC terminal, and no Android application is
involved in the transaction at all. Nevertheless, from Android
4.4, it is possible to emulate a card using the HCE technology
to emulate an ISO/IEC 14443 smart card without a secure
element. Emulating an AFC card requires the following three
features:

An Application ID (AID). When tapping the phone on
a terminal, the HCE service is triggered by a SELECT

Card Pool

Dispatcher

Card 1
Card 1

Card 1
Card 1

Available Cards

Card 1
Card 1

Card 1
Card 1

In Use Cards

Timeout /

Transaction
 Finished

Lock

HTTP Request HTTP Response

New client:
Fetch a new card

In-use client:
Read from pool

Fig. 7: Card pool scheduler.

command. This is identified by an AID. The AID of CTC
is 1PAY.SYS.DDF01, which we use to register our app.
An emulated card. An emulated ISO/IEC 14443 card needs
to be implemented for communicating with the terminal. As
we mentioned in Section II, the data in a card is organized in
files. The file structure of this emulated card is the same as the
structure shown in Fig. 2. The messages transmitted and re-
ceived between the card and the terminal are called application
protocol data unit (APDU) [4]. The application-level protocol
is half-duplex, by implementing a processCommandApdu
method: the input is the command APDU that the reader sends
and the output is the response APDU. The following commands
in the standard are implemented in LessPay:

• SELECT: Select a different directory.
• READ BINARY: Read data from a specific file.
• UPDATE BINARY: Update data in a specific file. As

we mentioned in Section II, updating a file requires
authentication. According to the standard, it is a one-
way authentication that the card validates the terminal. In
our attack model, we have to trust the terminal and ignore
the MAC unconditionally. As a result, when the terminal
gets a random number, we simply return a fixed one (see
next item) and accept the MAC without any calculation
and comparison.

• GET RANDOM NUMBER: We use a fixed number
00000000 instead of random numbers.

• GET BALANCE: Return the balance of the card. Note
that since the card is reused by many users, therefore the
balance is fetched from the cloud when the app starts and
updated periodically together with the fake entrance data.

The relayed part. The debit command is protected by TK
and requires mutual authentication (as we mentioned in
Section III-B). Therefore the debit command is relayed to
the cloud server. We do not implement this command in an
emulated card. We respond to the terminal whatever the cloud
server returns.

In order to minimize the expected fare, we need to falsify
the entrance data of the closest station. To achieve a better user
experience, we will not ask the user her destination. Instead,
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we use the Android API to locate the user via the Cell-ID and
Wi-Fi. We upload the user’s location every two minutes. In
each HTTP request, we send the user’s coordinate to the cloud
and get the balance, the card number (see Fig. 4: card number
is required to generate the TK, SK, and MAC), as well as the
fake entrance data accordingly.

2) Cloud-Side Implementation: The configuration of the
deployed server is: 2 × 4-core Xeon CPU E5-2609 @2.50GHz,
8GiB memory, 500GiB 10K-RPM SAS disk, and a 100Mbps
network. The system on the cloud side is implemented in Akka
2.4, which is a JVM-based concurrent system.
Fake entrance generator. PostGIS [12], which is a spatial
extender for PostgreSQL object-relational database, is used to
find the nearest station. Since we are targeting at a relatively
small area and City X is not located in high latitude, we choose
to use Cartesian distance to measure the distance rather than
the spherical distance for a better performance.
“Proxy”-card. We use ACR122u (NXP PN532 based) contact-
less smart card readers to communicate with the AFC cards.
In the 100-user test, we prepared 5 readers and 5 cards. The
server itself maintains the usage of different cards. We use
an LRU dispatching algorithm to select a card from the cards
that were not used in the past two minutes when receiving a
request. Each card is set to the state IN USE for 2 minutes
once we send the card number to the app. After a successful
transaction or timing out, the state is set to AVAILABLE again.
The scheduler is shown in Fig. 7.

IV. PERFORMANCE EVALUATION

This section evaluates LessPay through attacking real AFC
systems in City X. In this evaluation, we aim to answer the
following three questions:

• How much money users can “save” through using LessPay
(in Section IV-B)?

• What is the overhead of using LessPay (in Section IV-C)?
• Whether LessPay can support to large number of users

(in Section IV-D)?

A. Experimental Setup

We recruited 100 volunteers to use LessPay. These users are
equipped with HCE Android smartphones. The typical models
are Samsung Galaxy S5, Huawei Mate 7, Moto XT1095, and
LGE Nexus 5X. 62 users use LTE-TDD network, and the
others use LTE-FDD network.

The experiment lasted for three months (from Jan. 10th to
Apr. 10th, 2016). Each user was asked to use LessPay 40 times
per month, with a total of 12,000 tests performed.

B. How Much We Can Save?

We now answer the first evaluation question: how much
money users can “save”. The metro fares in City X vary from
$3 to $9 (in local currency) according to the distance. During
the 12,000 tests, the “legitimate” fares are presented in Fig. 8(a).
The average fare that users should pay is $5.03. After using
the LessPay app, all users only need to pay $2.03 instead of
the original fare of $3 (i.e., without using LessPay). This is

$ 3
12.7%

$ 4
23.3%

$ 5
34.4%

$ 6
15.5%

$ 7
7.7%

$ 8
5.1%

$ 9
1.3%

(a) Users should pay the fares from
$3 to $9.

$ 3
97.6%Failure

2.4%

(b) Except for 2.4% failures, users
actually paid only $3.

Fig. 8: The fares that users should pay and actually paid.

clear using LessPay enables users to pay less than the users
should pay. $25,181 in total is “saved” (see Fig. 8(b)).

As shown in Fig. 8(b), we also noticed that among these
tests, there are 2.4% cases that do not succeed, which means
these 2.4% attacks fail to “save” the money of our users.
According to the log, we found that the reason is the poor
network connection – the DEBIT command requires relatively
good quality Internet connection.

C. System Overhead

We evaluate the overhead of LessPay based on two aspects:
client-side overhead and cloud-side overhead. The former one
means the overhead on smartphones, while the latter one means
the overhead on the cloud server side.

Client-side overhead. The client-side overhead of LessPay
comes from three sources: memory, network traffic, and battery
usage. The typical memory usage is 20MiB, which is modest.

In terms of bandwidth overhead, our measured results show
that the size of a single request is 48 bytes (16-byte location
and 32-byte user token). The size of a single response is 20
bytes (6-byte card number, 4-byte balance, and 10-byte entrance
data). Including TCP handshakes, and TCP / HTTP headers,
the total network traffic cost is less than 1KB. The cumulative
distribution function (CDF) of network traffic consumed in
these 12,000 tests are shown in Fig. 10. The average network
traffic in all tests is 21.8KB, which costs only cents. For 80%
users, the network traffic cost is less than 36KB. The average
total traffic cost in a month (calculated over 40 trips) is less
than 1MB.

To understand the overhead of LessPay on battery life, we
record the battery power consumption in these tests. As shown
in Fig. 11, the average power consumption per trip is 3.4
mWh, which is extremely low given that the battery capacity
of popular smartphones lies between 5 - 20 Wh [13].

Cloud-side overhead. Fig. 9 illustrates the CPU utilization of
the server on a typical day. The web service is not a CPU-
bound application. In most time, the CPU usage is as low as 1
∼ 2%. Even in rush hours (e.g., 7 - 9 A.M.), the CPU usage
is below 15%.

The inbound/outbound bandwidth for cloud-side server is
quite low. There is no network traffic when no users turn the
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app on. As we pointed out, the traffic in each round-trip is
less than 1KB. As a result, network with 100Mbps bandwidth
is able to serve hundreds of thousands of users.

D. Scalability

We now explore whether LessPay can scale to large number
of users. The scalability of LessPay depends on the number
of physical cards in the cloud-side pool. In other words, more
physical cards can make LessPay support more users. In
order to evaluate the scalability of LessPay, we conducted a
simulation study. The simulation assumes: 1) users use LessPay
in rush hours, 2) all the users use LessPay within two hours,
and 3) users’ arrivals follow the Poisson distribution. The user
can be denied service, if she has to wait for longer than 15
seconds. We present the simulation results – the relationship
between the amount of users LessPay can support and the
number of physical cards in the card pool – in Fig. 12. We also
choose different service denial rates (0.1 and 0.2) to evaluate
the scalability of LessPay under different environments. As
shown in Fig. 12, even during rush hours, maintaining a card
pool size of 150 will satisfy 10,000 users’ need, which means
LessPay can serve much more users by simply adding a few
more cards to the pool. Thus, we conclude that LessPay scales
well to large number of users by only maintaining a moderate-
sized AFC card pool at the cloud-side.

V. RELATED WORK

This section reviews previous studies on relay attack and
attacks on contactless payment, smart card and AFC system.
Relay attack. Attackers have been trying to implement a
relay attack using various approaches. Initially, researchers
built specific hardware to relay the communication between
a smart card and a terminal. Hancke et al. [14] used a self-
built hardware to increase the distance up to 50m. They also
deeply reviewed relay attacks in [15], discussing relay resistant
mechanisms.

With the development of NFC, recent works have focused
on relay attacks using mobile phones. Nokia 6131 was the first
phone ever produced with NFC capability. Francis et al. [16]
revealed the possibility to perform a relay attack using COTS
devices. In [16]–[18], researchers performed relay attacks using
Nokia mobile phones and discussed the feasibility of some
countermeasures, such as timing, distance bounding, and GPS-
based or network cell-based location.

More recently, researchers focused on relay attacks with
Android mobile phones. Roland et al. [19], [20] described
relay attack equipment and procedures on Android phones.
Lee [21] demonstrated an open-source software NFCProxy that
is able to proxy transactions using Android phones. Korak and
Hutter [22] compared timing on relay attacks using different
communication channels. Still some other work relates to
privacy or human interaction issues [23], [24].
Contactless payment. Extracting information from the transac-
tion communication between a credit card and a POS terminal
using eavesdropping is possible. Haselsteiner and Beitfuß [25]
showed a possible way to eavesdrop NFC. They suggested

that, while normal communication distances for NFC are up to
10cm, eavesdropping is possible even if there is a distance of
several meters between the attacker and the attacked devices.
However, this information (mainly credit card numbers, and
expiration) can be obtained directly via NFC or even through
social engineering. Paget [26] showed the process and later
encode this information and wrote to magnetic stripe cards.
This attack is also known as downgrade attack, which may not
apply nowadays, due to banks refusing magnetic stripe cards
and migrating to Chip and PIN.

Smart card and AFC system. Originally, the MIFARE chip,
which is a memory card chip, was developed as a solution for
AFC. In 1994, an AFC system based on MIFARE was first
deployed in Oslo, Norway. Ten years after its introduction,
the MIFARE Classic was seen as the major candidate for
AFC systems. In 2008, however, researchers discovered a
serious security flaw in MIFARE Classic cards [27]–[29]. In
particular, the cipher algorithm used in MIFARE Classic, known
as CRYPTO1, has been reversed and reconstructed in detail,
and a relatively easy method to retrieve cryptographic keys
was revealed. Since then, the AFC cards have been gradually
replaced by processor cards globally.

According to a public report, in Dec. 2010, two engineers
from Qihoo used the flaw of MIFARE Classic chip to crack four
Beijing Municipal Administration Traffic Cards and modified
the balances. [30] Beijing had stopped issuing the MIFARE
Classic card since then. The newly issuing cards are processor
cards, which are the cards we used in our attack model.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Today’s AFC systems have been globally adopted and
billions of AFC cards have been issued all over the world.
Among these systems, ISO/IEC 14443 is the main protocol
used worldwide, being near universal in East Asia and Europe,
and in its early adoption in the rest of the world. Under this
background, this paper proposes a new attack on AFC systems,
which is scalable and invisible to AFC system operators.

In this paper, we have developed an HCE app, named Less-
Pay, based on our proposed and reported attack, and evaluated
the app through real-world experiments. The evaluational results
demonstrate the feasibility, practicality and scalability of our
approach.

B. Future Work

As this work has shown, the new attack challenges the current
thinking about the security of near field payments. Therefore
it is time for the industry to take an interest, which leaves the
possible contermeasures as future work. From the brute-force
to smart solutions, the following ideas could be applied or
tested:

1) Replace the system entirely with online transactions.
Currently, most systems work offline due to historical
reasons, which leaves this flaw that attackers may fool
the systems and terminals without being detected. If the
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systems are built online as how the banking payments
are made (authorized and debited online), it would be
much more secure, agile and adaptive.

2) Though online systems are widely used in banking
payments and proved to be secure, replacing the whole
systems costs too much. Alternatively, adding an authen-
tication code or digital signature to the entrance data may
be an easy but limited way to defend this attack. The
major limitation is that the authentication code or digital
signature must be stored along with the entrance data
statically, which is a proof that indicates no modification
is made since the whole entrance data is written. As a
consequence, reading partial data using READ BINARY
command is possible but not protected by the statically
generated proof.

3) ISO/IEC 7816-4 provides a kind of mechanism for
secure messaging. It allows encrypted data transmitting
between the card and the terminal. However, this requires
upgrading the system as well as the cards, which will
cost huge amount of money and time.

4) It might be useful to reject the attacker’s transaction if we
are able to detect the attack. Timing constraints [15], [22],
[31] are mainly used protocols to detect possible relay
attacks. However, commands in the entrance phase are
fully implemented using HCE, which have no significant
difference with a physical card. Therefore, these proposed
countermeasures would fail if we simply apply timing
contraints. New mechanism is required to detect the
attack.
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