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Abstract—Recently, the Blockchain-based cryptocurrency mar-
ket witnessed enormous growth. Bitcoin, the leading cryptocur-
rency, reached all-time highs many times over the year leading
to speculations to explain the trend in its growth. In this paper,
we study Bitcoin and Ethereum and explore features in their
network that explain their price hikes. We gather data and
analyze user and network activity that highly impact the price of
these cryptocurrencies. We monitor the change in the activities
over time and relate them to economic theories. We identify key
network features that help us reason about the determine the
demand and supply dynamics in a cryptocurrency. Finally, we
use machine learning methods to construct models that predict
Bitcoin price. Based on our experimental results using two large
datasets for validation, we confirm that our approach provides an
accuracy of up to 99% for Bitcoin and Ethereum price prediction
in both instances.

Index Terms—Blockchain, Bitcoin, Ethereum, prediction.

I. INTRODUCTION

Blockchain-based digital currencies have witnessed enor-
mous change in value over the last few years [1]. Bitcoin,
the most popular cryptocurrency, was launched in 2009, and
stayed as the only Blockchain-based cryptocurrency for more
than two years. However, today, the cryptocurrency world
has more than 5000 cryptocurrencies [2] and more than 5.8
million active users [3]. Bitcoin leads the cryptocurrency
market with 58% market share; corresponding to $4.9 Billion
USD trade volume and over 12,000 transactions per hour [4].
In December 2016, the price of 1 Bitcoin token (BTC) was
under $1000 USD, compared to about $19,000 USD in late
2017, and over $3600 USD in January 2019 [5]. These changes
in the price led to a lot of interest in cryptocurrency and
Bitcoin in particular. In this paper, we carry out a study on
Bitcoin and Ethereum to analyze their network features that
capture the user behavior and in turn have an impact on their
price.

The underlying technology of every cryptocurrency is
the Blockchain. Blockchain acts as a decentralized public
database that preserves anonymity and augments trust between
the users [6]. Trust in an anonymous peer-to-peer model
is achieved by consensus protocols such as Proof-of-Work
(PoW), Proof-of-Stake (PoS), Proof-of-Knowledge (PoK), and
distributed consensus [7]. The decentralized environment and
the append-only model prevent Blockchains failure and data
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tampering, and such features lay ideal foundations for cryp-
tocurrency applications to be built on top of Blockchain.

Cryptocurrencies involve the exchange of digital assets
(tokens) and have evolved from virtual currency to smart
contracts and applications beyond currency. This transforma-
tion of cryptocurrencies is categorized as Blockchain 1.0,
2.0 and 3.0 [8]. Blockchain 1.0 solely involves transfer of
digital currency between parties. Bitcoin is an example of
Blockchain 1.0, since it only allows transfer of digital tokens
(bitcoins). Blockchain 2.0 is an extension of Blockchain 1.0
that allows transfer of many other assets, offering more flexible
protocols for the users to design their transactions, such as
smart contracts [9] and decentralized autonomous organiza-
tions (DAOs) [10], which are among many useful applications
of Blockchain 2.0 [11]. Blockchain 3.0 is yet another extension
of this technology that envisions the use of Blockchain beyond
digital currencies, with applications for distributed censorship
resistant organization models, digital identity verification and
decentralized domain name system [12].

New cryptocurrencies address shortcomings of older ones,
with better throughput, scalability, and programmability. Al-
though this gives a general idea why cryptocurrency markets
have grown, many factors contributing to the rise in cryptocur-
rency prices are not well-understood. In this paper, we look at
the dynamics of various variables in a cryptocurrency, namely
Bitcoin and Ethereum, which can shed light on their price
trends. We use the network features of these cryptocurrencies
as an example and perform an in-depth analysis using the data
obtained from their Blockchain and peer-to-peer network.

The key factor that influences the growth of the cryptocur-
rency market is the interest shown by the users towards the
trade of the digital tokens. As more users engage in the market
activity, the demand for the digital tokens increases, leading to
a higher price. However, unlike fiat currency systems which
are centralized and traceable, cryptocurrencies are (theoreti-
cally) decentralized and pseudo-anonymous, lacking tangible
digital footprints. Therefore, with insufficient knowledge it
becomes challenging to measure the interest factor of the
users and perform a user-based study aimed towards the
understanding of changing price and market trends.

We address this challenge by arguing that despite anonymity
and decentralization of cryptocurrencies, there are several
network indicators that might be useful in demonstrating the
interest of users and the overall market behavior. We show
that these network indicators have a high correlation with
the price of a cryptocurrency and can be used to accurately
predict its price. Furthermore, these features can also be used
to provide a rationale behind the network activity driven by
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the user behavior. To validate our reasoning with experiments,
we construct a machine learning model that learns from the
highly correlated network indicators and predicts the price of
cryptocurrencies with high accuracy.

Prior efforts on prediction for cryptocurrency price used
the past price indexes to forecast the future price [13]. This
approach is inspired by a large body of work on stock market
prediction [14], and has been tried in the cryptocurrency
market. However, this method does not partake the volatile
behaviors of network entities that may indirectly, although
drastically influence the price, independent of the previous
price indexes. For instance, a sudden decrease in the network
hash rate can prolong the block publishing time and reduce the
network throughput as well as the number of newly generated
coins. Such a decline in hash rate is independent of the past
price index, and therefore cannot be used to accurately model
the future price. Lacking the ability to capture this behavior
has led to low accuracy of prediction models in the prior art
(≈ 52%). Specific to our work, we take a tangential approach
towards modeling the price by using network indicators that
are strongly correlated with the cryptocurrency price and lead
to better and more accurate prediction models.
Novelty. The novelty of our approach lies in: 1) the identifica-
tion of the key network features that capture the changing price
models, and can therefore be used for feature engineering (sub-
subsection III-A1), 2) the distinguishing methodology from
the prior work [13], in which only the past price indexes were
used to predict the future price (subsection III-A), and 3) the
methodical reasoning about correlation of identified features
with cryptocurrency price, to enhance the understanding of
user behavior and the cryptocurrency network (section IV).
After feature selection, we use standard machine learning tech-
niques, including regression, long short-term memory (LSTM)
networks, and conjugate gradient algorithm. As a result, our
prediction models achieve a high accuracy of 99% for Bitcoin
and Ethereum, outperforming the state-of-the-art [15] (52%),
and validating the novelty and significance of our approach.
Contributions. In summary, we make the following con-
tributions. 1) We study Bitcoin and Ethereum network and
identify the key network indicators that affect their price.
2) We show how these features are driven by user and network
activity, and provide a rationale behind their influence on
price. 3) We adopt machine learning approach using regression
and long short-term memory (LSTM) analyses to construct
price prediction models for Bitcoin and Ethereum. 4) Our
prediction models estimate the price of cryptocurrencies with
high accuracy (99%), and outperform the state-of-the-art.
Organization. The rest of the paper is organized as follows.
In section II, we review the related work. In section III, we
provide preliminaries of this work and outline our method-
ology and dataset attributes. In section IV we perform data
analysis to extract the most significant features that impact the
price. In section V we carry out our experiments and report
the results. Concluding remarks are made in section VI.

II. RELATED WORK

In this section, we review the notable related work. We focus
on analyses dedicated to understanding how cryptocurrencies
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Fig. 1. Cryptocurrency price change in 2017-18. Notice that there is a high
correlation in the price fluctuation in all cryptocurrencies. Furthermore, it can
be observed that towards the end of 2017, each cryptocurrency reached its
highest price index. In 2018, the price index decreased.

influence the financial and other systems, general analysis of
Bitcoin and Ethereum, and their price prediction.

Vigna et al. [16] analyzed how Blockchain based applica-
tions are challenging the global economic order by exploring
the impact of Blockchain-based applications on the future
of the financial system. Swan [8] proposed a possibility
of cheaper, efficient and secure economical models based
on Blockchain. The use of Blockchain 3.0 is estimated to
create new possibilities in Internet of Things (IoT), privacy
management, and voting systems [17].

Blockchain 2.0 transformed cryptocurrency from mere ex-
change of tokens to smart contracts. Rose [18] analyzed the
evolution of digital currencies and Omohundro [19] explored
recent developments in cryptocurrency and smart contracts.
Kosba et al. [9] explored different dimensions of smart con-
tracts, including criminal smart contracts. Peters et al. [20]
analyzed the future of banking system ledgers with Blockchain
technology, transaction processing and smart contracts.

For better applications, the security attack surface of
Blockchain is also explored, including the 51% attack, selfish
mining, double-spending, block withholding, block forks and
distributed denial-of-service (DDoS) attacks [21]; arguably the
most prevalent attack [22].

Limited research is done on the feature-based price analysis.
Indera et al. [13] developed a non-linear autoregressive Bitcoin
price prediction model using the opening and closing past
prices to predict future price. McNally [15] explored various
machine learning approaches to predict Bitcoin price using
Bitcoin price index, achieving a maximum accuracy of 52%
with LSTM networks. This paper is an extension of our
previously published work in [23]; concurrent to that work,
Jang and Lee [24] performed a time series analysis of Bitcoin
to improve predictive performance. They use Bayesian neural
network with other linear and non-linear benchmark models
to explain volatility in Bitcoin price.

In this paper, we explore other features, besides past prices,
to establish patterns in price. We investigate various network
features and identify the highly correlated ones that determine
the price. Using those features, we train and test our models,
which achieves a near-perfect prediction accuracy.
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Fig. 2. Correlation of major cryptocurrencies exemplified through a heatmap.

III. PRELIMINARIES

The main goal of this work is broad and aims to pro-
vide the initial step towards characterizing Blockchain-based
cryptocurrencies for predictions. Towards that, we perform
a detailed analysis for the top two cryptocurrencies in the
market, namely Bitcoin and Ethereum. We select them due
to their widespread popularity, extensive user-base, and high
market cap. Our approach towards price characterization based
on network features can be extended to other cryptocurrencies.

In Fig. 1, we plot the price change trend of five major
cryptocurrencies over the last one year. The difference in the
actual price value of each currency is high, and cannot be
plotted in one graph. We use the min-max normalization to
scale the data in the range [0, 1] and plot the normalized price.
The min-max scaling is conducted as z = xi−min(x)

max(x)−min(x) .
In Fig. 1, we observe an increase in the price of every

cryptocurrency over the year 2017, and particularly towards
the end of the year. The growing trend started around April
2017, and kept on increasing. Towards the end of 2017, the
rise in the price has been very steep. It is commonly conceived
that these cryptocurrencies are competitors in the market and
price hikes in one leads to a price fall in another. However,
from the plots we observed that there is an almost monotonic
change in the price of all the currencies simultaneously. They
all followed similar trends of rise and fall over time. It can be
further observed in Fig. 1 that the price of each cryptocurrency
decreased sharply at the start of the year 2018. Although, the
price has been fluctuating over the year, it is noteworthy that
there has been a monotonic change in the price across all
cryptocurrencies, indicating the presence of a correlating factor
among all.

To further analyze the similarity in their trends, we use
the Pearson correlation coefficient between the price in all
currencies over time, defined as ρ(X,Y ) = Cov(X,Y )√

Var(X)Var(Y )
.

We report our results in Fig. 2. While the pair-wise correlation
is high across all currencies, supporting the initial premise of
this work, we observe significant correlation between Bitcoin,
Dash and Litecoin price growth. Furthermore, we found a
significant correlation between the price trend of Ethereum
and Ripple. As such, the growth in one major cryptocurrency,

derives the growth in another similar currency, highlighting the
speculative nature of the interdependent interactions between
the currencies’ prices, and hinting on the potential generality
of findings to other systems.

A. Methodology
In this section, we outline our methodology for characteriz-

ing price of Bitcoin and Ethereum, spanning data collection,
data characteristics, and our approach. We outline the rele-
vance of key indicators in our dataset towards the broader
goal of making a price prediction model.

1) Data Collection: For this study, we crawled data related
to the network features of Bitcoin and Ethereum using online
resources. For Bitcoin, we used the public Blockchain and
API provided by the exchange company “Blockchain” [5], that
maintains data related to Bitcoin network. One of the features
used in our prediction model is the “number of wallets”. These
are the wallets created solely on the exchange of “Blockchain”
and are not related to other exchanges such as “Coinbase”.
The memory pool (mempool) data shown in our work is
also related to the information maintained by the mempool of
“Blockchain” full node. It is worth mentioning that memory
pool of nodes in the peer-to-peer settings of Bitcoin may vary
due peer positioning and nature of transaction relay. However,
all other features such as hash rate, price, number of bitcoins,
number of transactions are consistent across all exchanges and
nodes in the network. From “Blockchain” API, we collected
data from 04/2016 to 05/2018. The dataset consists of features
including the number of wallets, unspent transaction outputs
(UTXO’s), mempool size, block size, mean confirmation time,
miner’s income, transactions per day, transactions per block,
unique Bitcoin addresses, cumulative network’s hash rate,
network’s difficulty, fee, fee per transaction, system-wide total
bitcoins, trade volume and the market price of Bitcoin.

For Ethereum, we followed the same procedure and col-
lected data using the information provided by an Ethereum
exchange “Etherscan” [25]. We collected data from 04/2016
to 05/2018 including features such as transaction growth, ad-
dress count, ether supply, market cap, transaction fee, hashing
power, difficulty, block time, gas limit, and gas used.

The price of a cryptocurrency can be influenced by internal
features, external features, or both. Internal features include
indicators that represent the network behavior such as mem-
pool size, hash rate [23] etc. On the other hand, external
features include crude oil price, government policies towards
cryptocurrency exchanges, electricity charges, public senti-
ment [26] etc. In this paper, we focus on collecting internal
features and determine their effect on price. Our rationale for
this approach is driven by the fact that the internal features
eventually accommodate for the impact of external policies.
For instance, if electricity cost is increased, some mining pools
shut down [27]. As a result, the internal features including
the hash rate and the block publishing time change. Since
the external factors influencing the cryptocurrency market are
eventually manifested in the internal network behavior, we
primarily focus on collecting and analyzing internal features.
External features, however useful, fall outside the scope of this
paper.
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(a) Normalized Features (Bitcoin)
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(b) Normalized Features (Bitcoin)
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(c) Normalized Features (Bitcoin)
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(d) Normalized Features (Bitcoin)
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(e) Normalized Features (Ethereum)
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(f) Normalized Features (Ethereum)
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(g) Normalized Features (Ethereum)
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(h) Demand and Price (Bitcoin)
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Fig. 3. Trends in the features captured from our dataset. Notice that the hash rate, the difficulty, and the transaction cost are highly correlated with the price.
The increase in demand (Total Wallets / Total Bitcoins) has led to an increase in the price. The features in Ethereum dataset are more correlated with price
than Bitcoin dataset. Furthermore, Ethereum also captures the demand and supply trend more accurately than Bitcoin.

2) Data characteristics: Bitcoin and Ethereum involve the
exchange of digital tokens, and their operations may vary at
the application level. As mentioned earlier, Bitcoin belongs
to the first generation of Blockchain (Blockchain 1.0) that
only involves exchange digital coins. Ethereum on the other
hand, belongs to Blockchain 2.0, that offers development of
smart contracts atop Blockchains. Smart contracts enable the
users to make conditional changes in the exchange of coins
by offering greater programmability with a broader use-case.
Due to that, the dataset includes some common features among
both cryptocurrencies such as hash rate, block size etc., and
some unique features such as gas limit, gas price, etc.

The number of wallets gives an estimate of how many
new users join the platform everyday. Although this measure
is specific to the exchange, the other parameter known as
“unique addresses” captures the growth of users in the overall
cryptocurrency. For Bitcoin, we collected a total of 24,867,899
wallets and 464,173 unique addresses, while for Ethereum we
collected a total of 812,183 addresses. In cryptocurrencies,
mempool is a repository for unconfirmed transactions prior to
the mining process. The size of mempool varies depending on
the rate of the incoming transactions, the transaction backlog,
and the rate of transaction mining.

In Bitcoin, the size of blocks is fixed at 1MB and the average
block computation time is 10 minutes. In Ethereum, the block
size is adjustable depending upon the transaction backlog
and mean confirmation time. The average block computation
time in Ethereum is between 10-20 seconds. We observed
in our dataset that the maximum hash rate of Bitcoin was
equal to 11,941,671 Terahashes per second (TH/second) with
a difficulty parameter of 1,590,896,927,258, and the maximum
hash rate of Ethereum was equal to 268,134 Gigahashes per
second (GH/second) with a difficulty parameter of 3218.953.
The total coins in Bitcoin and Ethereum, at the time of our
data collection were 17,055,012 and 99,687,139 respectively.

3) Analysis Metrics and Approach: In this paper, we ana-
lyze the attributes of the cryptocurrency system, exemplified
by Bitcoin and Ethereum, that are influential on their price.
To determine the contributing features towards price, we found
the most highly correlated features in the dataset to explore
general trends and insights about the two cryptocurrencies.

Next, we estimated the change in user behavior (character-
ized by various attributes associated with users) that led to
increase or decrease in the price. For example, if the number
of wallets is increasing, then there is a likelihood that more
users are joining the network, which leads to a higher demand
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Fig. 4. Price trends observed in Bitcoin, Ethereum, crude oil. Notice that
over time, while Bitcoin and Ethereum show similar trends in price changes,
the oil prices have been distinctly different.

for the fixed number of coins in the system. With the limited
coin supply and high collective purchase power, the price
(naturally) goes up. Using those highly correlated features, we
train machine learning models to predict the price of Bitcoin
and Ethereum over time. Towards that, we divided our data
into a training dataset and a test dataset, and cross validated
the predicted outcome. With good accuracy, we were able to
construct models for the top two cryptocurrencies that help in
explaining their price trends.

IV. DATA ANALYSIS AND TRENDS

General trends. We analyze the trends in features of dataset
for each cryptocurrency. In order to do that, we normalize
the data using the min-max normalization and plot various
normalized features over time in Fig. 3. In Fig. 3(a) and
Fig. 3(b) we observe that the number of wallets, the hash rate,
the number of bitcoins, the cost per transaction, the difficulty,
and the miner’s revenue change monotonically with the price.
In Bitcoin, the mempool size and and the fee varied over time,
although had an identical trend to one another; the correlation
between the fee and the mempool size was 0.82. When the
mempool size grows, for sudden high demands, or while the
Bitcoin network is under flood attacks [28], users naturally pay
more to prioritize their transactions, which explains the high
correlation between the mempool size and the transaction fee.

We also observed that in the Ethereum dataset, the features
including addresses, hash rate, block time, and gas limit
closely followed the changing trends in price. In Blockchain
applications, it is possible that two miners come up with a valid
block and only one of them gets accepted into the main chain.
In Bitcoin, those rejected blocks are known as the “Orphaned
Blocks” and in Ethereum they are called “Uncle Blocks”.

From Fig. 3(b), it can be observed that in Bitcoin there is
no link between the rate of orphaned blocks and price, but in
Ethereum, from Fig. 3(g), there is a high correlation between
the rate of uncle blocks and the price. One possible explanation
to that is block time in each cryptocurrency. In Bitcoin, the
average block time is 10 minutes and it is less likely that two
miners can come up with same block within that time period.
However, in Ethereum, the block time is very short and when
the price is increasing more miners attempt to mine blocks
which increases the possibility of uncle blocks.

TABLE I
REGRESSION ANALYSIS RESULTS, HIGHLIGHTING A MODERATE POSITIVE

CORRELATION BETWEEN CRUDE OIL PRICES AND BITCOIN (0.55), AS
WELL AS ETHEREUM (0.44). HOWEVER, THE CRUDE OIL PRICE IS NOT

USED AS A PREDICTION FEATURE IN THIS STUDY BECAUSE IT IS BELOW
THE CORRELATION THRESHOLD (0.6), USED FOR FEATURE SELECTION.

Slope Y-Intercept Correlation
Coefficient

Standard
Error

Bitcoin 0.41 0.09 0.55 0.02
Ethereum 0.35 0.08 0.44 0.03

Supply-and-demand trends. In cryptocurrencies, new coins
are generated in the system as when a block is published. Since
the average block time is constant, therefore, the supply of new
currency in the system is deterministic and linear. When new
users join the cryptocurrency, new wallets and addresses are
created. In Fig. 3(a), we observed that the number of wallets
and addresses have increased non-uniformly in Bitcoin and
Ethereum, raising the demand for the limited number of coins.
Since the number of wallets grew at a higher rate than new
coins, we can formulate this as a demand and supply model:
a growing rate of wallets denotes that more users are joining
Bitcoin, which leads to an increase in demand for the coins.
Since the increase rate of coins is a small constant, the new
coin supply to system is less than the demand, which explains
the primary cause of price rise with growing wallets number.

We plot the min-max normalized number of wallets per
available coins for Bitcoin and Ethereum in Fig. 3(h) and
Fig. 3(i). We first calculated the number of wallets per
bitcoin, and then normalized the number using the min-max
normalization. We observed that there is an increase in the
demand, which contributes to the price hike. We also noticed
that correlation between demand and price in Ethereum was
higher (0.96) than Bitcoin (0.74).
Examining External Features. It has been postulated in the
literature [29], that the crude oil price may influence trends
in the cryptocurrency market. The crude oil price affects the
electricity tariffs worldwide, which in turn affect the operations
of the mining pools. High electricity price can force mining
pools to shut down, and as a result, the hash power and the
throughput of a cryptocurrency might decrease.

To examine that, we collected the price indexes of crude oil
in the international market and observed its correlation with
the price of Bitcoin and Ethereum. In Figure 4, we plot the
normalized price indexes of cryptocurrencies with crude oil.
Notice that the overall trend in oil prices differs in Bitcoin
compared to Ethereum. Especially, since the start of 2018, and
while the price of cryptocurrencies decreased, the oil prices
have increased considerably.

To further observe the patterns of similarity, we performed
linear regression analysis to model the relationship between
the independent variable (crude oil price) and the dependent
variables (Bitcoin and Ethereum prices). We report our results
in Table I. Overall, the results show a positive correlation
between the crude oil price and the price of cryptocurrencies.
In particular, Bitcoin has a comparatively high correlation
coefficient (0.55) compared to Ethereum (0.44). However, and
as we show later in the subsequent paragraph, for our pre-
diction models, we only select features that have a minimum
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Fig. 5. In 5(a) miner’s revenue is indicated by the Coinbase reward. 5(b), shows the increasing hash rate and the network’s difficulty. Notice in 5(c), when
the network’s difficulty is constant and the hash rate decreases, the price also decreases.
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Fig. 6. Correlation matrix of Bitcoin. Here, wal, cpt, dif, hr, mr, tt, ua, fee, pr,
and utxo denote number of wallets, cost per transaction, difficulty, hash rate,
mining revenue, total transactions, unique addresses, fee, price, and unspent
transaction output respectively.

correlation coefficient of 0.6. Since the correlation coefficient
of crude oil is below our baseline criteria, we do not include
it among the selected features for the prediction task.
Features for price prediction. To determine the most useful
features in our dataset for price estimation, we calculated the
correlation matrix of all data attributes. We report a subset
of correlation matrix in Fig. 6, and Fig. 7. It can be observed
from the figures that the features in Ethereum dataset are more
highly correlated with the price than the features in Bitcoin
dataset. In Ethereum, the minimum and maximum correlation
factor of the features with price is 0.7 and 0.9 respectively,
while in Bitcoin, the minimum and maximum correlation of
the features with the price is 0.4 and 1.0 respectively. For
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Fig. 7. Correlation matrix of Ethereum. Here tt, ua, tc, mc, pr, hr, diff, gp,
gl, and gu denote total transactions, unique addresses, market cap, price, hash
rate, difficulty, gas price, gas limit, and gas used respectively.

our regression model and prediction, we selected features with
correlation coefficient greater than 0.6.

A. Effects of User Activity on Price

In this section, we try to explain the user activity, determined
by highly correlated features, affects the price. Among them
the features such as the number of wallets, the hash rate, and
the UTXO’s, determine the number of new users coming into
the network, new miners joining the mining pools, and the
aggregate spendable balance of all the users.
Wallets and Unique Addresses. As mentioned earlier, the
increase in the number of wallets corresponds to greater
demand of the limited coins in the system, which results in a
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price hike. This reasoning can also be extended to the number
of unique addresses and the number of transactions per day.
The growth in these two features indicates more users coming
into the system and making more transactions. As such, the
increase in the number of users and user activity (transactions)
corresponds to (possibly) more cash is flowing into the system.
Since cash flow in Bitcoin increases, the (collective) purchase
power of users also increases. This implies that for fixed assets
(bitcoins) owned by a user A in the system, there is some user
B in the system who is willing to pay more for the same set of
assets. In economics, the trend above is captured by a theory
known as the “greater fool theory” [30], which states that the
price of a commodity is determined by the expectations of
users rather than by the commodity’s intrinsic value.
Difficulty and Hash Rate. Computing a block generates new
coins in the system, which are given to the miner as a Coinbase
reward. Miners earn coins from the Coinbase rewards and
fee paid by the users for transaction processing. As the price
grows, the corresponding value of miner’s income (in USD)
also grows. In Fig. 5(a) and Fig. 5(d), we plot the miner’s
income from our two datasets. We observed that the Coinbase
rewards and fee have increased over time. With the growing
incentive of income, more miners are joining the mining pools
hoping to capitalize on the increasing monetary reward, which
explains why the hash rate grows with the price.
Bitcoin. In Bitcoin, the difficulty is a measure of how long it
takes to compute a block, which is defined by a target value
set by the network [31]. Based on the hashing power, the
target is adjusted every two weeks to keep block mining time
within 10 minutes. The difficulty is recomputed based on the
hashing power: if hashing power increases, the probability of
finding a block within under 10 minutes increases. To adjust
the probability, the difficulty is raised by increasing the target.
In Fig. 5(b) and Fig. 5(e), we plot the difficulty along with
the network’s hashing rate for Bitcoin and Ethereum. In (1)),
we show how the block computation time, T (B), is affected
by the hashing rate, Hr, the target, Target, the probability
of finding a block, Pr(B), and the average number of hashes
required to solve the target, H .

Pr(B) =
Target

2256
;H =

1

Pr(B)
;T (B) =

H

Hr
(1)

Since the difficulty remains constant for 2016 blocks, we
analyze how the mining pool size affects the price and the
average block computation time. From our dataset, we found
a window of time where the difficulty was constant and the
hashing rate was reduced. At the same time interval, we found
the mean confirmation time for transactions and the price.
From (1) we inferred that, with constant Pr(B), the block
time T (B) increases if Hr is reduced, leading to a higher
confirmation time for transactions and less Coinbase rewards
per time unit, therefore leading to a fall in the price. In
Fig. 5(c), we plot one case that happened in October 2017.
Ethereum. In Ethereum, the difficulty is adjusted after ev-
ery block using Homstead method described in [32]. Since
Ethereum follows a different set of protocols than Bitcoin, its
difficulty measure does not remain constant for a deterministic
period of time (2016 blocks in Bitcoin). Due to that, there is no

price fluctuation observed in Ethereum related to the change
in the hash rate and constant difficulty. However, within our
dataset, we noticed that on 15th October 2017, the difficulty
measure of Ethereum decreased by 52% over night while the
hash rate was constant. Although, it did not affect the price,
but it decreased the block computation time by 52%. We plot
this observation in Fig. 5(f).
UTXO’s. In Bitcoin, another important feature that con-
tributes towards the price is the set of unspent transaction
outputs (UTXO’s). UTXO’s are the spendable transactions in
wallets that are confirmed in Blockchain. UTXO’s determine
the number of sellers in Bitcoin. Just as the increase in the
number of wallets indicates more buyers in the system, more
UTXO’s indicate more sellers. UTXO’s depend on the number
of coins produced and the nature of the ongoing transaction.
In our dataset, we observed that there is a high correlation
between the price and the UTXO set.

As the UTXO set increases, there is more spendable balance
in the system which leads to an increase in the exchange
of transactions (trade), which in turn increases the price of
Bitcoin. The fall in Bitcoin price in 2018 can also be attributed
to the fall in the UTXO set, indicating less spendable balance
in the system and limited trade avenues for the users. This
can be further linked to the decreasing interest of people in
Bitcoin which explains the decrease in price.
Gas. In Ethereum, gas is the “fuel” unit used in the execution
of smart contracts. Each operation code instruction in a smart
code consumes different units of gas which is summed up
towards the end of smart contract execution to compute the
total units of gas used. The transaction fee is calculated using
gas price and the units of gas used during the process. In our
dataset, we observed that the amount of gas used in Ethereum
had a high correlation with the price, indicating a user behavior
related to the interest in smart contracts. A high use of gas
can (possibly) mean that more smart contracts are being run
on Ethereum virtual machine (EVM), or more computation
intensive operations are being performed while running smart
contracts. In each case, it is indicative of a high user interest in
Ethereum and smart contracts which explains the price hike.

V. PREDICTIONS: EXPERIMENT AND RESULTS

In this section we build price prediction models for Bitcoin
and Ethereum using features in our dataset. For prediction
models we take supervised learning approach using regression,
long short-term memory (LSTM) networks, and conjugate
gradient algorithm. Our results validate that network features
can be used to accurately predict the price of a cryptocurrency.

A. Regression Approach

We consider three popular approaches: the linear regression,
regression with gradient boosting, and regression with random
forest. We test our datasets with each method to find the opti-
mum technique useful towards the price prediction of Bitcoin
and Ethereum. In the following, we review the conceptual
primitives required for understanding each of those algorithms.
Linear regression. Linear regression (LR) is a method of
predicting the future value of an unknown dependent variable
by learning the values of known independent variable [33].
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(f) Design-based sampling (RF)
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Fig. 8. Results obtained from regression model applied on Bitcoin dataset with 30% test data. Notice in 8(a), high similarity in prediction and test values
indicate high accuracy. Also notice that random sampling always achieved a higher accuracy than design-based sampling. Due to low accuracy in design
based sampling as shown in 8(c), 8(f), and 8(h), there is a significant difference in the predicted and test price.
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Fig. 9. Results obtained from Ethereum dataset. Notice that unlike Bitcoin, gradient boosting and random forest achieve higher accuracy of prediction with
low error compared to linear regression. Design-based sampling achieves lower accuracy than random sampling, however, it is higher compared to Bitcoin.

Provided data in the format x = x1, x2, ...xn, y = y1, y2, ...yn,
where x is the independent variable and y is the dependent
variable to be predicted, linear regression finds a line of best
fit, y = mx+ b, where m is the coefficient of regression of y
on x, and b is the y-intercept. For example, if the regression
coefficient m, of y on x is 0.45 units, that will imply that y
will increase by 0.45 if x increases by 1 unit. The accuracy of
linear regression is determined by calculating the coefficient
of determination R2, also known as the least square fit. Least
square fit calculates the minimum (min) between the predicted
value and the real value as mentioned below:

R2 =

n∑
i=1

(∆yi)
2

=

n∑
i=1

[(mxi + b)− yi]2 = min (2)

The value of regression coefficient m, and y-intercept b is
computed by taking partial derivative of R2 and setting to 0:

m = n

n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi/n

n∑
i=1

(xi
2)− (

n∑
i=1

xi)
2 (3)

b =

n∑
i=1

xi
2

n∑
i=1

yi −
n∑

i=1

xi

n∑
i=1

xiyi/n

n∑
i=1

xi
2 − (

n∑
i=1

xi)
2

(4)

The approach of using linear regression for modeling has
been widely adopted in many applications. De Cock et al. [34]
introduced a protocol for performing linear regression over a
dataset in multiple parties. Roy et al. [35] propose predict
financial market behavior based on a linear regression model.
Gradient Boosting. Gradient boosting (GB) uses residual
fitting to minimize the loss function and improve the accuracy.
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TABLE II
RESULTS OBTAINED FROM REGRESSION MODELS APPLIED ON BITCOIN AND ETHEREUM DATASETS WITH VARYING TEST DATA PERCENTAGE. LINEAR

REGRESSION PERFORMS BEST WITH 10% TEST DATA WHILE GRADIENT DECENT AND RANDOM FOREST PERFORM BEST WITH 5% TEST DATA.

Test Data (%) Linear Regression Random Forest Gradient Boosting
Rˆ2 RMSE MAE Rˆ2 RMSE MAE Rˆ2 RMSE MAE

Bitcoin

5 0.9937 0.0207 0.0143 0.9970 0.0141 0.0072 0.9968 0.0146 0.0076
15 0.9956 0.0175 0.0121 0.9933 0.0215 0.0108 0.9924 0.0228 0.0108
25 0.9949 0.0179 0.0117 0.9914 0.0234 0.0105 0.9924 0.0221 0.0105
35 0.9951 0.0170 0.0112 0.9893 0.0251 0.0109 0.9927 0.0206 0.0100
50 0.9952 0.0162 0.0106 0.9899 0.0235 0.0105 0.9933 0.0191 0.0094

Ethereum

5 0.9559 0.0486 0.0289 0.9999 0.0028 0.0014 0.9999 0.0022 0.0012
15 0.8897 0.0718 0.0316 0.9984 0.0088 0.0026 0.9996 0.0041 0.0016
25 0.8964 0.0651 0.0298 0.9981 0.0087 0.0027 0.9992 0.0056 0.0017
35 0.9113 0.0593 0.0267 0.9978 0.0093 0.0028 0.9994 0.0050 0.0017
50 0.9277 0.0563 0.0262 0.9972 0.0110 0.0031 0.9995 0.0049 0.0016

The loss functions, root-mean-square error (RMSE) and mean
absolute error (MAE) are defined as:

RMSE =

√√√√ n∑
i=1

(yi − yip)2,MAE =

n∑
i=1

|yi − yip |

n
(5)

where yi is i-th target value, yip is i-th prediction value. To
minimize loss function value, gradient descent approach is
used to update predictions based on a learning rate, α.

ypi = yip − α ∗ 2 ∗
n∑

i=1

(yi − yip) (6)

Gradient boosting allows updating the prediction values so
that the sum of the remainders is minimum and the predicted
values are close to the actual values. This approach is used
for many applications as well. For example, Alonso et al. [36]
research the wind energy prediction problem using Gradient
Boosted Regression. Zhang et al. [37] propose gradient boost-
ing regression tree method to improve travel time prediction.
Random forest. Random forest (RF) is one of supervised
learning algorithms that builds multiple decision trees and to
make precise predictions [38]. Random forest creates random
subsets of the features by drawing bootstrap sample Z∗ of
size N from training data and growing a random forest tree
Tb using these subsets recursively. It outputs the ensemble of
trees {Tb}B1 and makes prediction over a new point x with re-

gression using f̂Brf (x) = 1
B

B∑
b=1

Tb(x). Random forest is robust

against outliers and avoids overfitting. Various structures are
predicted in the literature using this approach. Lin et al. [39]
show that the prediction of wind speed and direction using
random forests. Sadeghi-Mobarakeh et al. [40] use random
forest model to predict the values in the electricity market.

For our first experiment, we formulated our problem as a
multiple regression model based on highly correlated features
in the dataset. We applied the random sampling method for
data division and trained the model on linear regression,
random forest regression, and gradient boosting. We changed
the percentage of training and test data in for each regression
model and evaluated the performance using regression coeffi-
cient R2, RMSE, and MAE, defined in (2), and (5). We applied

both random sampling and design-based sampling [41] for
each regression model. In design-based sampling, we split the
dataset into 80% training data and 20% test data based on the
time series. In other words, we trained data from April 2016,
to January 2018, and predicted results from January 2018, to
May 2018. We report our results in Fig. 8 and Fig. 9. We
found higher accuracy in Ethereum price prediction compared
to Bitcoin. We also noticed that compared to random sampling,
the design-based sampling achieved lower accuracy. This can
be observed in Fig. 8(c), 8(f), and 8(h), as well as in Fig.
9(c), 9(f), and 9(h), which show a big difference between the
predicted curve and the test curve. Unlike random sampling,
the design-based sampling does not capture characteristics
of data that lies in the unknown regions. It is similar to
using past indexes to predict the future. Therefore, it does
not lead to high accuracy. For more details about random
and design-based sampling, we refer the reader to [41]. To
further investigate the accuracy of prediction we varied the
percentage of test data from 5% to 50% and noticed the change
in the accuracy and error. We report our results in Table II.
From our experiment, we made the following observations.
1) Linear regression achieved highest accuracy and low error
in Bitcoin dataset, followed by the random forest and gradient
boosting, respectively. 2) Gradient boosting achieved highest
accuracy in the Ethereum dataset, followed by the random
forest and linear regression. 3) As the percentage of the
training data decreased, the accuracy decreased and the error
increased. 4) The maximum accuracy achieved in Bitcoin
dataset was 0.9957 with 10% test data. 5) The maximum
accuracy achieved in the Ethereum dataset was 0.9999 with
10% test data. 6) Design-based sampling always achieved
lower accuracy (a maximum of 0.901) compared to the ran-
dom sampling. 7) In design-based sampling, linear regression
outperformed gradient boost and the random forest. 8) There
is a more linear relationship among the Bitcoin features with
its price, compared to Ethereum.

B. LSTM Approach

LSTM units are units of recurrent neural networks (RNNs)
that can be used for prediction by keeping a continuous set
of data for a long time [42]. RNNs constructed from LSTM
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Fig. 10. Results obtained by applying LSTM networks prediction over the dataset. Note that prediction over Bitcoin is more accurate than Ethereum.
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Fig. 11. LSTM cell overview. Ct, ht, xt, ft, it, and ot denote state of the
cell, hidden state, input, output of forget gate, output of the input gate, and
output of the output gate. Ct−1 and ht−1 denote previous cell’s state.

units are also called an LSTM networks, and are popular for
making predictions based on time series data. For prediction
purposes, three types of deep learning approaches are typically
used, recurrent neural networks (RNNs), convolutional neural
networks (CNNs), and autoregressive integrated moving aver-
age (ARIMA). Our choice of RNNs over other alternatives is
driven by the results obtained in the literature. In one such
work [15], it has been shown comparatively how RNNs and
ARIMA perform in predicting Bitcoin price. In particular, it
is noted that RNNs significantly outperformed ARIMA and
achieved higher accuracy. Moreover, another work has shown
that CNNs are well suited to perform predictive analysis on
image or text-based samples [43]. To this end, and because
RNNs (particularly, LSTM-based RNNs) are more suitable to
our goal of prediction, we use them in this study.

Technically, an LSTM consists of memory cells where each
cell is composed of three gates, a forget gate, an input gate,
and an output gate. The gates are responsible for managing
the information of each cell. The forget gate layer determines
the information transfer based on the results of the sigmoid
layer, ft, where W is weight, b is bias, and } is element-wise
vector product as defined below:

ft = σ(Wf } [ht−1, xt] + bf ) (7)

Input gate layer and tanh layer decide the nature of the infor-
mation to be stored in the cell. The sigmoid layer determines
the value to update (it) and the tanh layer creates a new
candidate, C̃t, that is the state value of the cell.

it = σ(Wi } [ht−1, xt] + bi) (8)

C̃t = tanh(WC } [ht−1, xt] + bC) (9)

The current state of the cell can be calculated by multiplying
the old state of the cell, Ct−1 by the result of the forget gate,

ft, and adding the result of it ∗ C̃t, which is the product of
the output of the input gate and new candidate values.

Ct = ft ∗ Ct−1 + it ∗ C̃t (10)

The hidden state, ht, based on the state of the cell that is
revised, is obtained by selecting the parts of the cell state to
be output at the output gate, ot, and putting the current cell
state into the tanh layer and multiplying by the result of the
sigmoid layer. The formula for computing ot and ht is defined
below in (11), (12), while the model of this LSTM networks
is illustrated in Fig. 11.

ot = σ(Wo } [ht−1, xt] + bo) (11)
ht = ot ∗ tanh(Ct) (12)

We used LSTM approach on our datasets of Bitcoin and
Ethereum to build a price prediction model. Similar to our
methods in linear regression, we used min-max normalization
on dataset features and selected the features with a correlation
factor greater than 0.6. We split the dataset into 80% training
and 20% test subsets, and varied the number of epochs to
observe the change in the prediction model. We set the batch
size (subset size of training sample) to 1 and the look back
value to 1. The look back value is the number of previous
time steps to be utilized as input variables for prediction of
the next time period. We tested various look back values (1–
5 and 10–50), and chose 10 for our experiments based on
the performance. We report our results in Fig. 10. Our results
indicate that the error values, captured by RMSE and MAE in
test data for Bitcoin were low at 50 epochs (0.11 and 0.095),
while the error values in test data for Ethereum were low at 30
epochs (0.13 and 0.1091). For the train data, the error values
decreased as the number of epochs increased for both Bitcoin
and Ethereum. In Table III, and Table IV, we enlist the values
of RMSE and MAE for training and test data obtained from
our experiments. The results show that with LSTM, Bitcoin
achieves higher accuracy with minimum error on each epoch.
This also validates our results obtained in regression analysis.
C. Conjugate Gradient Approach

We also built a neural network and used conjugate gradient
algorithm with linear search for price prediction. We normalize
and split the data into 20% test and 80% training subsets. We
train our network on 100 epochs and compute the training
and validation errors. For this model evaluation, if the training
and validation errors are high, the model is considered to be
underfitting, and overfitting otherwise. In our experiment, we
found the training error for Bitcoin was 0.00013, where the
corresponding validation error was 0.00089. For Ethereum,
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Fig. 12. Results obtained from neural network for Bitcoin and Ethereum. With random sampling, the accuracy was as higher than design-based sampling
with low training and validation error. Prediction accuracy was higher for Bitcoin dataset.

TABLE III
THE RESULTS OBTAINED FROM LSTM MODEL USED ON BITCOIN

DATASET. THE RESULTS SHOW THAT WITH 50 EPOCHS RMSE AND MAE
FOR TEST DATA WAS MINIMUM.

Epochs Train Data Test Data
RMSE MAE RMSE MAE

10 0.05 0.042485 0.17 0.163407
20 0.05 0.045599 0.14 0.135538
30 0.05 0.046075 0.13 0.118998
40 0.05 0.044236 0.12 0.106008
50 0.04 0.040621 0.11 0.094958

TABLE IV
THE RESULTS OBTAINED FROM LSTM MODEL USED ON ETHEREUM

DATASET. THE RESULTS SHOW THAT WITH 30 EPOCHS RMSE AND MAE
FOR TEST DATA WAS MINIMUM.

Epochs Train Data Test Data
RMSE MAE RMSE MAE

10 0.09 0.08287 0.15 0.123918
20 0.07 0.06937 0.14 0.114183
30 0.06 0.057834 0.13 0.109132
40 0.05 0.050322 0.14 0.113484
50 0.05 0.043871 0.15 0.125366

the training and validation errors were found to be 0.00026,
and 0.00095, respectively. From this experiment, we notice
that the error, while small, is slightly higher than the training
error. Such a model is considered to be a good fit and
we report our results in Fig. 12. For comparison, we also
used the hessian gradient decent optimization which reduces
training and validation error at a faster rate by choosing second
derivative information for better gradient direction. However,
the overall margin of error with hessian algorithm was more
than the conjugate gradient’s.

VI. CONCLUSION AND FUTURE WORK

In this paper, look into analyzing cryptocurrency market
price through a correlation analysis with various cryptocur-
rency attributes, exemplified by Bitcoin and Ethereum. We
collect data spanning more than 20 months and estimate the
most significant features that influence the price. We computed
the correlation between features such as hash rate, number
of users, transaction rate, total bitcoins and price. We map
the change in features on users and network activities to
understand the dynamics of the cryptocurrencies. We used our
findings to construct a machine learning model that accurately
predicts Bitcoin and Ethereum prices with the minimum error

rate, based on other attributes than past price. Compared to the
previous work that predicts Bitcoin price based on previous
price observations, our approach is highly accurate.
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