3D User Interface Hardware

Lecture #7: Output Devices Spring 2025 Joseph J. LaViola Jr.

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

@Joseph J. LaViola J

Overview

- Visual Displays
- Auditory Displays
- Haptic/Tactile Displays
- Level of Fidelity
- Running Case Studies

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Visual Displays

- Present visual information to the user through visual system
- Most common display device in 3D Uis
- Requires computer system to generate digital content the display device transforms into perceptible form

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Visual Display Characteristics

- Field of regard (FOR) and field of view (FOV)
 - FOR: the amount of the physical space surrounding the user in which visual images are displayed (measured in degrees of visual angle)
 - FOV: the maximum number of degrees of visual angle that can be seen instantaneously on a display

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Visual Display Characteristics

- Spatial Resolution
 - Related to pixel size and is considered a measure of visual quality
 - Resolution depends on both the number of pixels and the size of the screen
 - Can be measured in absolute units such as dots per square inch (dpi)
 - Can also be measured in degrees of solid angle subtended relative to the viewer

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Visual Display Characteristics

- Screen geometry
 - Variety of different shapes including rectangular, circular, L-shaped, hemispherical, and hybrids
 - Projection mapping supports displays on any shape or surface
- Light Transfer
 - Through a monitor or television, front projection, rear projection, laser light directly onto the retina, and through the use of special optics
 - Technologies include liquid crystals, light-emitting diodes, digital light processing, and organic light-emitting diodes

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Visual Display Characteristics

- Refresh rate
 - Refers to the speed with which a visual display device refreshes the displayed image from the frame (usually expressed in Hertz)
 - Not the same as frame rate (speed with which images are generated and placed in the frame buffer)
- Ergonomics
 - Maintain user comfort
 - Unobtrusive as possible

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Visual Display Characteristics

- Depth cue support (see Chapter 3)
 - Stereopsis (strong with objects in close proximity)
 - Motion parallax
 - Monocular depth cues
 - Deal with accommodation-vergence mismatch
 - "true 3D" displays
 - light-field displays

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Visual Display Device Types

- Single screen displays
- Surround-screen and multiscreen displays
- Workbenches and tabletop displays
- Head-worn displays
- Arbitrary surface displays
- Autostereoscopic displays

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Single Screen Displays

- Conventional monitors
- High-definition and higher resolution televisions
- Front- or rear-projection displays using a wall or screen material as the projection surface
- Smartphone and tablet displays

Photograph courtesy of Joseph J. LaViola Jr.

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Single Screen Displays

- Relatively inexpensive compared to more complex displays
- Provide monocular and motion parallax depth cues
- Pair of stereo glasses is also needed to achieve stereoscopic viewing

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Single Screen Displays

- Stereoscopic viewing
 - Active (shutter glasses)
 - Synchronized to open and close their shutters at a rate equal to the refresh rate of the visual display (temporal multiplexing)
 - Passive
 - Filters two separate, overlaid images with oppositely polarized filters (polarization multiplexing)
 - Display two separate, overlaid images in different colors (spectral multiplexing)

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Single Screen Displays

- Single screen display with stereo and head tracking (sometimes called fish-tank VR)
 - Advantages
 - Simple yet effective for 3D spatial applications
 - Support any input device
 - Good spatial resolution
 - Disadvantages
 - Not very immersive
 - Limited range of user movement
 - Accommodation-vergence mismatch
 - Physical objects used for interaction may occlude display

Spring 2025

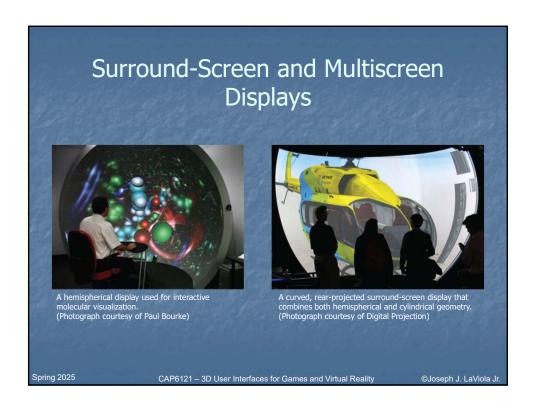
CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Surround-Screen and Multiscreen Displays

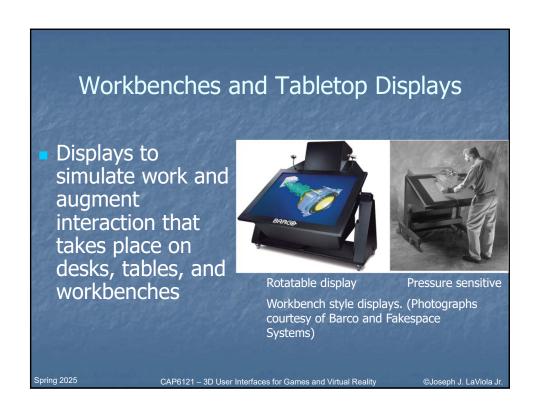
- Visual output device that increases the FOR for a user or group of users
 - set of display screens
 - large curved display screen
 - some combination of curved and planar screens
- Goal is to "surround" the user

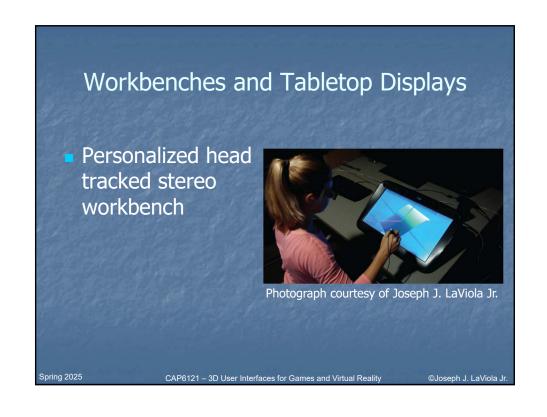
Typical surround screen device with 4 orthogonal screens

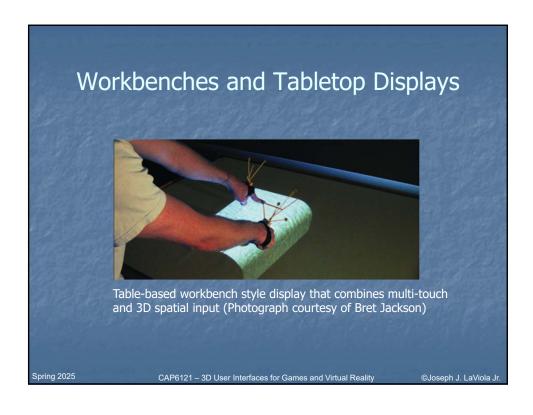

3D model courtesy of Mark Oribello, Brown University Graphics Group

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality




Surround-Screen and Multiscreen Displays


- Advantages
 - High spatial resolution with high FOR and FOV
 - Provide stereo and strong motion parallax depth cues
 - Real and virtual objects mixed in the display
- Disadvantages
 - Expensive and require a lot of physical space
 - Accommodation-vergence mismatch
 - Typically only one user is tracked at a time
 - Front projection can effect 3D UI techniques

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Workbenches and Tabletop Displays

- Advantages
 - Good spatial resolution
 - Intuitive display for select applications (e.g., medical simulation, 3D modeling)
 - Same depth cues as single and surround screen displays (assuming stereo and head tracking hardware)
 - Can easily support 2D and 3D UI
- Disadvantages
 - Limited movement around the device
 - Physical-based travel techniques not possible
 - Limited range of 3D viewpoints
 - Accommodation-vergence mismatch

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Head-Worn Displays

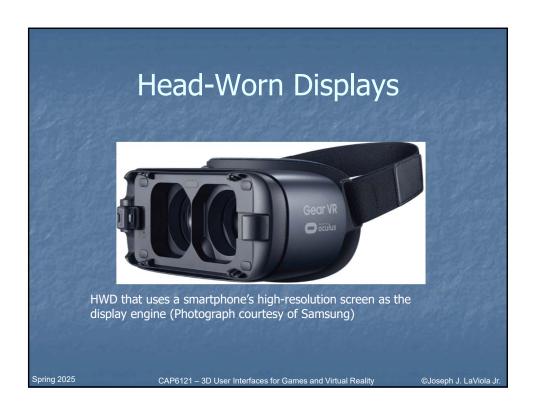
- Displays in which the device is attached (coupled) to the user's head
 - Also referred to as head mounted display (HMD)
 - Device is wearable
- Sophisticated device
 - Requires the complex integration of electronic, optical, mechanical, and even audio components
- Many different designs over the years

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Head-Worn Displays


- Main goal is to place images directly in front of the user's eyes using one or two small screens
- Combination of refractive lenses and/or mirrors (depending on the optical technique used) used to present and sometimes magnify the images shown on the screens

Head-worn display for virtual reality (Photograph courtesy of Sony)

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Head-Worn Displays

- Head Mounted Projective Display
 - Design variation of HWD
 - Hybrid between HWD and projection display
 - Small projectors attached to head-coupled device, these project the graphical images into the real environment
 - Uses retroreflective material
 - Deflects light back in the direction it came from, regardless of its incident angle with the screen surface
 - Ideally suited to collaborative mixed and augmented reality applications

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

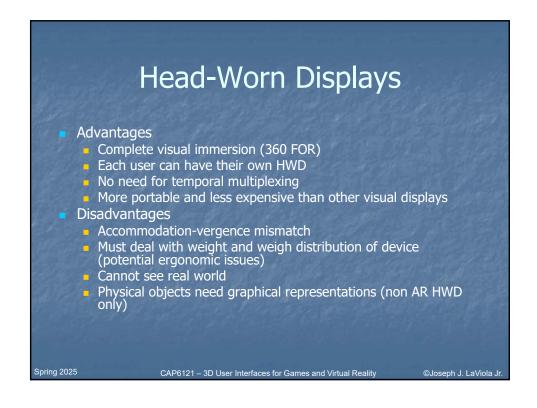
Head-Worn Displays

- Augmented Reality HWDs
 - Supports seeing both real and virtual imagery
- Optical see-through
 - Place optical combiners in front of the user's eyes
 - Combiners are partially transparent and partially reflective, so user can see the real world and virtual images reflected from small head-mounted screens
 - Provide direct view of real world with full resolution and no time delay
 - Much easier to see registration problems

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr


Head-Worn Displays

- Video see-through
 - Stream real-time video from head-mounted cameras to the graphics subsystem
 - Blends the virtual and real
 - Make wide FOV easy to support
 - Take advantage of compositing techniques
 - Video has lower visual quality
- HWPD
 - Project imagery into real world
 - Ensuring proper color correction and perspective critical

Spring 2025

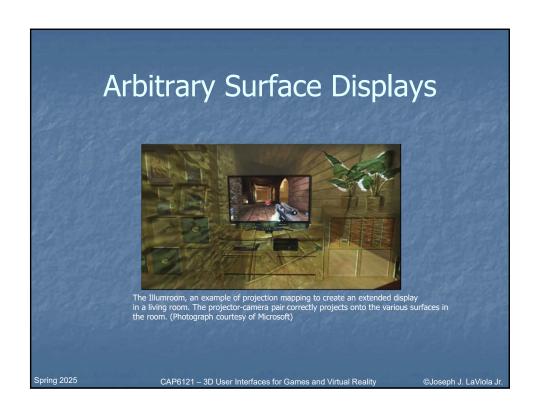
CAP6121 – 3D User Interfaces for Games and Virtual Reality

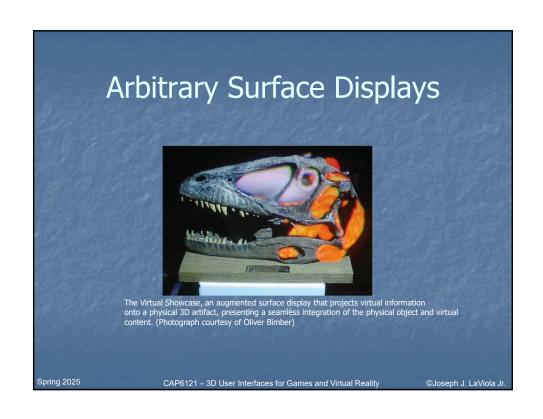
Arbitrary Surface Displays

- Project imagery directly on arbitrary surfaces of any shape or size
 - Projection mapping
 - Spatial augmented reality
- Many technical challenges
 - Dependent on complexity of geometrical surface and its color and texture characteristics
 - 3D stereo
 - Shadows
 - Display area restrictions

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality


©Joseph J. LaViola Jr


Arbitrary Surface Displays

- Common approach is camera projector pairs
 - Camera performs display surface estimation
 - Surface's geometry
 - Color
 - Texture
 - Multi-projector systems help with shadows and display size
 - Calibration between projectors and camera required to ensure proper display
- Other approaches include
 - Optical overlays
 - Transparent surfaces

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Arbitrary Surface Displays

- Advantages
 - Good 3D stereo
 - Projecting onto objects supports appropriate depth
 - Will need view dependent stereo for images above or below an object surface
 - Display is anywhere
- Disadvantages
 - Front projection limits direct manipulation
 - Can be difficult to get right visually

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Autostereoscopic Displays

- Generate 3D imagery without need for special shutters or polarized glasses
- Common examples
 - Lenticular
 - Volumetric
 - Holographic
- Other approaches
 - Compressive light fields, diffractive-optical elements, integral imaging, parallax illumination and barrier grids

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

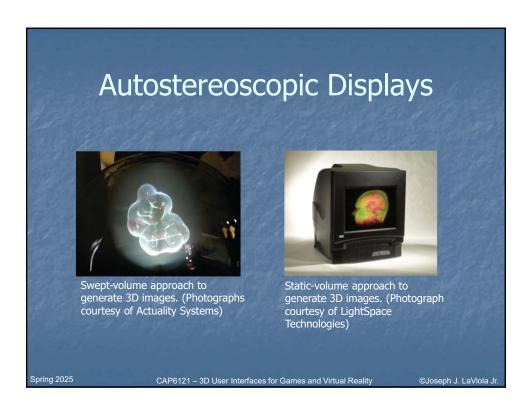
Autostereoscopic Displays

- Parallax barrier: use a vertical grating
 - One eye sees odd pixels
 - Other eye sees even pixels
- Lenticular display: use a cylindrical lens array
 - Different 2D images into different subzones
 - Zones are projected out at different angles

A lenticular display. (Photograph courtesy of Joseph J. LaViola Jr.)

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality


©Joseph J. LaViola Jr

Autostereoscopic Displays

- Volumetric Displays
 - Create "true" 3D images by actually illuminating points in 3D space
- Swept-volume approach sweep a periodically time-varying 2D image through a 3D spatial volume at high frequencies
- Static-volume approach
 - Uses two intersecting invisible laser beams to create a single point of visible light (allows for voxel drawing)
 - Uses high speed projector with a stack of air-spaced liquid crystal scattering shutters

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Autostereoscopic Displays

- Holographic displays produce 3D imagery by recording and reproducing the properties of light waves from a 3D scene
 - Computational step
 - 3D description of a scene is converted into a holographic fringe pattern
 - Optical step
 - Modulates the fringe pattern and turns it into a 3D image

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

losenh I I aViola Ir

Autostereoscopic Displays

- Advantages
 - Number of viewers with correct perspective unlimited (volumetric and holographic)
 - No trackers needed to maintain motion parallax
 - No accommodation—vergence cue conflicts
- Disadvantages
 - Only small working volume (not appropriate for immersive AR or VR)
 - Cannot produce monocular depth cues (volumetric)
 - Lenticular displays require "sweet spot" for optimal viewing

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Auditory Displays

- Generation and display of spatialized 3D sound
- Localization is the psychoacoustic process of determining the location and direction from which a sound emanates
- Important benefits for 3D UI designer
- Requires
 - 3D sound generation
 - Sound system

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

3D Sound Generation and Synthesis

- 3D sound sampling: record sound the listener will hear in the 3D application by taking samples from a real environment
 - Can produce realistic results
 - Environmentally specific
- Binaural audio recording: place two small microphones are inside a person's ears

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

3D Sound Generation and Synthesis

- Simulate binaural recording process
 - Process monaural sound source with right and left head related transfer functions (HRTFs)
 - Supports position specific listening (highly interactive)
- Problems
 - HRTF measurements need to be taken in echofree environments
 - Many HRTFs needed to cover an entire space

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

3D Sound Generation and Synthesis

- Auralization process of rendering the sound field of a source in space using mathematical or physical models
 - Recreate listening environment with reflection patters
 - Good for reverberation effects

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

3D Sound Generation and Synthesis

- Auralization techniques
 - Wave-based modeling
 - Solve wave equation to completely re-create a sound field
 - Ray-based modeling
 - follow rays emitted from sound sources
 - Ambisonics
 - Directional recording approach that can capture a full sphere-based sound field with a minimum of four microphones
 - Wave-field synthesis
 - Virtual sound source can be approximated by overlapping sources originating from actual sources at other positions

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Sound System Configurations

- Stereophonic headphones
 - Present different info to each ear
 - HRTF coupling
 - High level of channel separation
 - Isolate user from external sounds
 - Multiple users can receive different 3D sounds
 - Problem with inside-the-head localization
 - False impression sounds emanating from inside a user's head
 - Difficult to talk and listen to others outside the application

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Sound System Configurations

- External speakers
 - Placed strategically in physical environment
 - Often used with displays that are not head worn
 - User does not need to wear any additional device
 - Problem with crosstalk
 - Making sure left and right ear receive appropriate sounds
 - Speaker placement can cause reduced sound quality
 - Sound partially blocked by display devices and other objects

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Audio in 3D Interfaces

- Localization
 - Important 3D cue for wayfinding (Chapter 8)
- Sonification
 - Turning information into sound
- Ambient effects
 - Provide sense of realism
- Sensory substitution and feedback
 - Substituting one sense for another (i.e., sound for touch)
- Annotation and help
 - Collaboration

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Haptic Displays

- Provide user with sense of touch, force, vibration, temperature
- Force sensations stimulated from joint and muscle nerve endings
- Touch sensations stimulated from nerve endings in the skin
- Often coupled with input device tracking
- Requires haptic rendering

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Haptic Display Characteristics

- Perceptual dimensions
 - Typically required direct physical contact with the body
 - Multiple parallel physiological and perceptual mechanisms required for good haptics
 - No best haptic display
 - Tactile cues
 - Vibrations at different frequencies and amplitudes, static relief shapes, or direct electrical stimulation
 - Haptic cues
 - Target different muscle groups in the limb
 - Actively modify forces that apply to the human body
 - Body location
 - Density and distribution of nerve endings in different parts of the body effects actuation

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Haptic Display Characteristics

- Resolution
 - Spatial resolution
 - The minimum spatial proximity of the stimuli that the device can present to the user
 - Temporal resolution
 - Minimal temporal proximity of the tactile stimuli generated by haptic displays (refresh rate)
 - Needs to be high (> 1000 Hz)

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Haptic Display Characteristics

- Ergonomics
 - Plays pivotal role
 - Need safety mechanisms in place
 - Do not want to cause pain
 - Want any user attachments to be comfortable and easy to put on

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

© Joseph J. LaViola J

Haptic Display Device Types

- Ground-referenced
- Body-referenced
- Tactile
- In-air
- Combination
- Passive

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Ground-Referenced Haptics

- Create a physical link between the user and a ground point in the environment
 - Desktop, wall, ceiling, floor
- Variety of different technologies
 - Force-reflecting joysticks
 - Pen-based force-feedback devices
 - Stringed devices
 - Motion platforms
 - Large articulated robotic arms
- User range is limited

A ground-referenced forcefeedback device. (Photograph courtesy of SensAble Technologies)

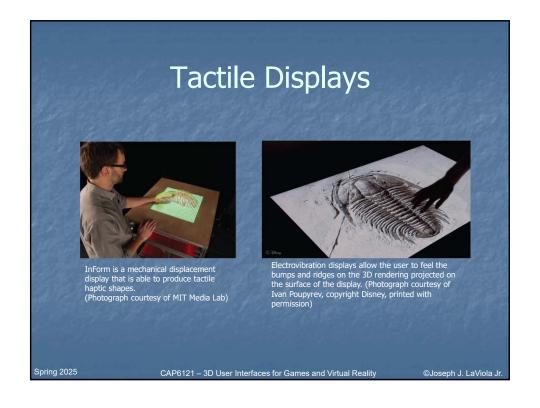
Spring 2025

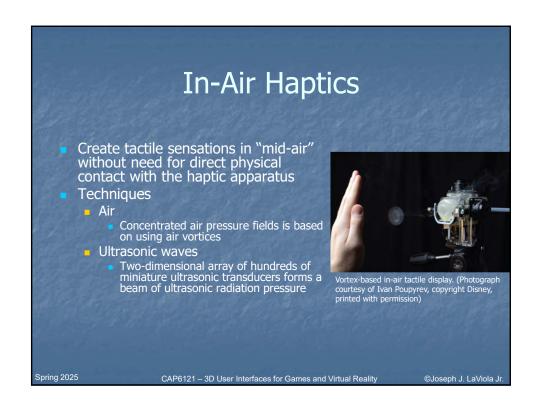
CAP6121 - 3D User Interfaces for Games and Virtual Reality

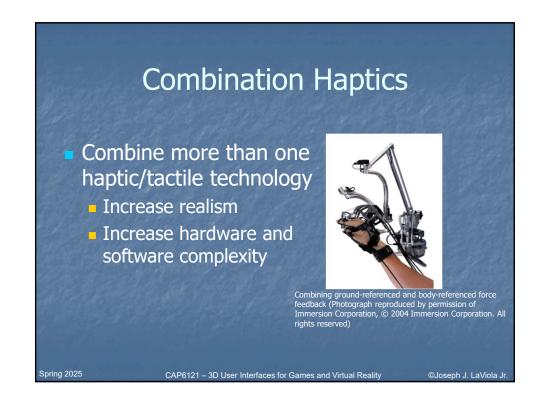
©Joseph J. LaViola Jr

Body-Referenced Haptics

- Places the haptic device part of the user's body—the haptic display is "grounded" to the user
 - Provide user with much more freedom of motion
 - User must bear weight of device
- Promising approach to reduce weight is electrical muscle stimulation




A body-referenced force-feedback device. (Photograph reproduced by permission of Immersion Corporation, © 2004 Immersion Corporation. All rights reserved)


Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Passive Haptics

- Use passive physical representations of virtual objects to communicate their physical qualities
 - Convey a constant force or tactile sensation based on the geometry and texture of the particular object
 - Very specific to a particular object
- Can be non hand-held objects
 - Floors, tables, walls

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J

Haptics in 3D UIs

- Improve realism in 3D UI
- Assist in object manipulation
 - Provide feedback
- Tactile feedback useful for identifying textures on surfaces
- Help determine weight of virtual objects

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Displays and Level of Fidelity

- Fidelity: realism of the display
- Level of fidelity: is the degree to which the sensory stimuli produced by a display correspond to those that would be present in the real world
- Importance
 - Benchmarks compared to real world
 - Significant effects on user experience
- No single number, made up of many components (e.g., FOV, FOR, spatial resolution)
- Can be useful in choosing an appropriate display

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Case Studies

VR Gaming Case Study

- Want 360 FOR so choice is HWD
- Need to deal with ergonomics and safety
 - Lightweight and comfortable
 - Comfortable accommodation distance
 - Ideally have wireless HWD or backpack
 - Make sure users done hit physical objects
- Spatial sound for added realism (headphones)
- Rumble and vibration from hand held controllers

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Case Studies

VR Gaming Case Study

- Key concepts:
 - Choose a visual display that will be both effective and practical for end users
 - Carefully consider human factors issues
 - Don't forget to account for social aspects such as non-users viewing the VR experience

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Case Studies

Mobile AR Case Study

- Requirements
 - Robust to withstand harsh conditions
 - Comfortable to hold for long periods of time
 - Compact to fit in a backpack
- Handheld video-see-through AR display was only reasonable choice

HYDROSYS handheld AR device setup. (Image courtesy of Ernst Kruijff and Eduardo Veas)

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Case Studies

Mobile AR Case Study

- Key concepts:
 - Support a comfortable power grip to hold the system firmly
 - Allow users to vary their poses and resting the arms against the body to extend usage duration
 - Closely analyze the relationship between display angle and pose
 - Cook closely at the balance of the setup
 - Try to limit the need for additional batteries for operation and compress additional cables

Spring 2025

CAP6121 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Jr

Conclusion

- Examined a variety of different output devices
 - Visual
 - Auditory
 - Haptic
- Looked at display fidelity
- Presented display choices for the two case studies

Spring 2025

CAP6121 – 3D User Interfaces for Games and Virtual Reality

Next Class Input Devices Readings LaViola – Chapter 5 Spring 2025 CAP6121 – 3D User Interfaces for Games and Virtual Reality @Joseph J. LaViola Jr.