## Lecture - 13

## Making Faces

Guenter et al SIGGARPH'98

## Making Faces

- System for capturing 3D geometry and color and shading (texture map).
- Six cameras capture 182 color dots (six colors) on a face.
- 3D coordinates for each color dot are computed using pairs of images.
- Cyberware scanner is used to get dense wire frame model.


## Making Faces

- Two models (cyberware and frame data) are related by a rigid transformation.
- Movement of each node in successive frames is computed by determining correspondence of nodes.


## Applications

- Facial expressions
- can be captured in a studio,
- delivered via CDROM or internet to a user
- reconstructed in real time on a user's computer in a virtual 3D environment
- User can select
- any arbitrary position for the face,
- any virtual camera view point,
- any size


## Six Views



## Color Dots



## Wireframe Model



## Main Steps

- 3-D reconstruction from 2-D dots
- Correspondence of Cyberware dots (reference) with 3-D frame dots
- Frame to frame dot correspondences
- Constructing the mesh
- Compression of Geometric Data




## 3-D reconstruction from 2-D dots

- Generate all potential 2-D point correspondences for $k$ cameras with $n$ points in each camera: $(k) h^{2}$
- Each point correspondence gives rise to a 3-D $2^{2}{ }^{n}$ candidate point defined as intersection of two rays cast from 2-D points.
- Project 3-D candidate point to each of two camera views,
- if the projection is not within some bound from the centroid of either 2-D point then discard it as a potential 3-D candidate point.


## 3-D reconstruction from 2-D dots

- Each of the points in 3-D list is projected into a reference view, which is the camera with the best view of all points on the face.
- If the projected point is not within a threshold distance from the centroid of 2-D dot it is deleted from the list
- The remaining points constitute 3-D match list for that point
- For each 2-D point $\binom{m}{3}$ possible combinations of three points in the 3-D list are computed, and the combination with the smallest variance is chosen.
- The average of three points in the best combination is the true 3-D position corresponding to a 2-D dot.


## Correspondence of Cyberware dots (reference) with 3-D frame dots

- Obtain Cyberware scan of a face.
- Place reference dots on the Cyberware model by manually clicking on the dots.
- Align reference dots in Cyberware scan with the video frame dots.
- Manually align frame dots in frame zero with the reference dots


## Correspondence of Cyberware dots (reference) with 3-D frame dots

- Automatically align reference dots with frame dots in other frames by solving correspondence using graph matching
- For each reference dot add an edge for every frame dot of the same color that is within a distance $e$.
- Search for connected components of graph which has equal number of reference and frame dots
- (most connected components will have two dots, one for reference and other from frame dots).


## Correspondence of Cyberware dots (reference) with 3-D frame dots



Figure 6: Mascting dots.


## Frame to frame dot correspondences

- Assume Cyberware scan as a reference nodes
- Solve correspondence between reference dots and frame dots for frame 0 .
- For each frame $i>0$ move the reference dots to the location in previous frame, then find the best match between the reference dot and neighboring frame dots.
- Move each reference dot to the location of its corresponding 3D location.

$$
d_{j}^{i}=d_{j}+\vec{v}_{j}^{i}
$$

## Constructing The Mesh

- Move other vertices by a linear combination of the offsets of the nearest matching dots.

$$
p_{j}^{i}=p_{j}+\sum_{k} \alpha_{k}^{j}\left\|d_{k}^{i}-d_{k}\right\|
$$

## Compression of Geometric Data

- 182 3-D dots in each frame
- Use eigen vector approach to reduce dimensionality to only 45 principal components
- Need to transmit the coefficients and eigen vectors
- This reduces geometric data to 26 kbps for coefficients, and 13 kbps for eigen vectors



## Rendered Images



Figue 16: Sequence of fealered intiges of vextared mesh

