Lecture-16

Computing Motion Trajectories

http://www.cs.ucf.edu/~vision/papers/ shah/93/SRT93.pdf

Algorithm For Computing Motion Trajectories

- Compute tokens using Moravec's interest operator (intensity constraint).
- Remove tokens which are not interesting with respect to motion (optical flow constraint).
- Optical flow of a token should differ from the mean optical flow around a small neighborhood.

Algorithm For Computing Motion Trajectories

- Link optical flows of a token in different frames to obtain motion trajectories.
- Use optical flow at a token to predict its location in the next frame.
- Search in a small neighborhood around the predicted location in the next frame for a token.
- Smooth motion trajectories using Kalman filter.
Kalman Filter (Ballistic Model)

$x(t)=.5 a_{x} t^{2}+v_{x} t+x_{0} \quad$| $\mathbf{Z}=\left(a_{x}, a_{y}, v_{x}, v_{y}\right)$ |
| :--- |
| $y(t)=.5 a_{y} t^{2}+v_{y} t+y_{0}$ |
| $\mathbf{y}=(x(t), y(t))$ |
| $f(\mathbf{Z}, \mathbf{y})=\left(x(t)-.5 a_{x} t^{2}-v_{x} t-x_{0}, y(t)-.5 a_{y} t^{2}-v_{y} t-y_{0}\right)$ |

Kalman Filter (Ballistic Model)

$$
\begin{aligned}
\mathbf{Z}(k) & =\mathbf{Z}(k-1)+K(k)(Y(k)-H(k) \mathbf{Z}(k-1)) \\
K(k) & =P(k-1) H^{T}(k)\left(W^{T}+H P(k-1) H^{T}(k)\right)^{-1} \\
P(k) & =(I-K(k) H(k)) P(k-1) \\
Y(k) & =-f^{T}(\mathbf{Z}(\mathbf{k}-\mathbf{1}), \mathbf{y})+\frac{\partial f}{\partial \mathbf{Z}} \mathbf{Z}(k-1) \\
H(k) & =\frac{\partial f}{\partial \mathbf{Z}} \\
W & =\frac{\partial f}{\partial \mathbf{y}} \mathbf{A}^{T} \frac{\partial f^{T}}{\partial \mathbf{y}}
\end{aligned}
$$

Point Correspondence

- Given n video frames taken at different time instants and m points in each frame, the motion correspondence problem deals with a mapping of a point in one frame to another point in the second frame such that no two points map onto the same point

Key Points

- Constraints \rightarrow Cost Function
- Algorithm \rightarrow Minimize the cost function

Constraints

Proximal Uniformity Constraint

- Most objects in the real world follow smooth paths and cover small distance in a small time.
- Given a location of point in a frame, its location in the next fame lies in the proximity of its previous location.
- The resulting trajectories are smooth and uniform.

Proximal Uniformity Constraint

Proximal Uniformity Constraint

Establish correspondence by minimizing:

$$
\delta\left(X_{p}^{k-1}, X_{q}^{k}, X_{r}^{k+1}\right)=\frac{\left\|\overline{X_{p}^{k-1} X_{q}^{k}}-\overline{X_{q}^{k} X_{r}^{k+1}}\right\|}{\sum_{x=1}^{m} \sum_{z=1}^{m} \mid \overline{X_{x}^{k-1} X_{y}^{k}}-\overline{X_{y}^{k} X_{z}^{k+1}} \|}+\frac{\left\|\overline{X_{q}^{k} X_{r}^{k+1}}\right\|}{\sum_{x=1}^{m} \sum_{z=1}^{m}\left\|\overline{X_{y}^{k} X_{z}^{k+1}}\right\|}
$$

Initial correspondence is known, for each x in the denominator of the first term y is known.

Greedy Algorithm

- For $\mathrm{k}=2$ to $\mathrm{n}-1$ do
- Construct M, an mxm matrix, with the points from k-th frame along the rows and points from $(\mathrm{k}+1)$-th frame along the columns. Let

$$
M[i, j]=\boldsymbol{\delta}\left(X_{p}^{k-1}, X_{q}^{k}, X_{r}^{k+1}\right)
$$

when

- for $\mathrm{a}=1$ to m do
- Identify the minimum element $\left[i, l_{i}\right]$ in each row i of M
- Compute priority matrix, B, such that $B\left[i, l_{i}\right]=\sum_{j=1, j \neq l_{i}}^{m} M[i, j]+\sum_{k=1, k \neq i}^{m} M\left[k, l_{i}\right]$
\quad for each i.
- Select $\left[i, l_{i}\right]$ pair with highest priority value and make $\phi^{k}(i)=l_{i}$
- Mask row i and column $\quad l_{i}$ from M.
http://www.cs.ucf.edu/~vision/papers/PAPER3.PDF

Block Matching

Frame k-1

Frame k

Origin is at bottom right corner

Block Matching

- For each 8X8 block, centered around pixel (x, y) in frame $\mathrm{k}, \mathrm{B}_{\mathrm{k}}$
- Obtain 16X16 block in frame k-1, enclosing (x, y), $\mathrm{B}_{\mathrm{k}-1}$
- Compute Sum of Squares Differences (SSD) between 8X8 block, B_{k}, and all possible 8 X 8 blocks in $\mathrm{B}_{\mathrm{k}-1}$
- The 8X8 block in $\mathrm{B}_{\mathrm{k}-1}$ centered around ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$), which gives the least SSD is the match
- The displacement vector (optical flow) is given by $u=x$ x'; v=y-y'

Sum of Squares Differences (SSD)

$$
(u(x, y), v(x, y))=\arg \min _{\substack{u=0 \ldots-8 \\ v=0 \ldots 8}} \sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)-f_{k-1}(x+i+u, y+j+v)\right)^{2}
$$

Minimum Absolute Difference (MAD)

$(u(x, y), v(x, y))=\arg \min _{\substack{u=0 \ldots-8 \\ v=0 . .8}} \sum_{i=0}^{-7} \sum_{j=0}^{7}\left|\left(f_{k}(x+i, y+j)-f_{k-1}(x+i+u, y+j+v)\right)\right|$

Maximum Matching Pixel Count (MPC)

$$
\begin{aligned}
& T(x, y ; u, v)=\left\{\begin{array}{lc}
1 & \text { if }\left|f_{k}(x, y)-f_{k-1}(x+u, y+v)\right| \leq t \\
0 & \text { Otherwise }
\end{array}\right. \\
& (u(x, y), v(x, y))=\arg \max _{\substack{u=0 . \ldots-8 \\
v=0 . .8}} \sum_{i=0}^{-7} \sum_{j=0}^{7} T(x+i, y+j ; u, v)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cross Correlation } \\
& (u, v)=\arg \max _{\substack{u=0 . .-8 \\
v=0.8}} \sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)\right) \cdot\left(f_{k-1}(x+i+u, y+j+v)\right)
\end{aligned}
$$

Normalized Correlation

Mutual Correlation

$$
(u, v)=\arg \max _{\substack{u=0 . \ldots-8 \\ v=0 . .8}} \frac{1}{64 \sigma_{1} \sigma_{2}} \sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)-\mu_{1}\right) \cdot\left(f_{k-1}(x+i+u, y+j+v)-\mu_{2}\right)
$$

Sigma and mu are standard deviation and mean of patch-1 and patch-2 respectively

$$
\begin{gathered}
\text { Correlation Using FFT } \\
\begin{array}{c}
C(u, y)=\sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)\right) \cdot\left(f_{k-1}(x+i+u, y+j+v)\right) \\
c(u, v)=f(x, y) \otimes g(x, y) \\
C\left(w_{1}, w_{2}\right)=F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)
\end{array}
\end{gathered}
$$

Append smaller patch with zeros to make it equal to bigger patch Find FFT of reference $(f(x, y)$ and mission $(g(x, y))$ patches
Multiply two FFTs
Find inverse FFT of the product, this will give you a correlation surface

Phase Correlation

$$
\begin{aligned}
& c(x, y)=f(x, y) \otimes g(x, y) \\
& C\left(w_{1}, w_{2}\right)=F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right) \\
& \tilde{C}\left(w_{1}, w_{2}\right)=\frac{F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)}{\left|F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)\right|} \\
& \text { Assume } \\
& f(u, v)=g(x+u, y+v) \\
& \text { Then } \\
& F\left(w_{1}, w_{2}\right)=G\left(w_{1}, w_{2}\right) e^{-\left(i\left(w_{1} u+w_{2} v\right)\right)} \\
& \text { Now } \\
& \tilde{C}\left(w_{1}, w_{2}\right)=e^{-\left(i\left(w_{1} u+w_{2} v\right)\right)} \\
& c(x, y)=\boldsymbol{\delta}(x-u, y-v)
\end{aligned}
$$

Issue with Correlation

- Patch Size
- Search Area
- How many peaks

Change Detection

Main Points

- Detect pixels which are changing due to motion of objects.
- Not necessarily measure motion (optical flow), only detect motion.
- A set of connected pixels which are changing may correspond to moving object.

$$
\begin{gathered}
\text { Picture Difference } \\
D_{i}(x, y)=\left\{\begin{array}{cc}
1 & \text { if } \quad D P(x, y)>T \\
0 & \ldots \ldots \text { otherwise }
\end{array}\right\} \\
D P(x, y)=\left|f_{i}(x, y)-f_{i-1}(x, y)\right| \\
D P(x, y)=\sum_{i=-m}^{m} \sum_{j=-m}^{m}\left|f_{i}(x+i, y+j)-f_{i-1}(x+i, y+j)\right| \\
D P(x, y)=\sum_{i=-m i=-m k=-m}^{m} \sum_{i}^{m}\left|f_{i}(x+i, y+j)-f_{i+k}(x+i, y+j)\right|
\end{gathered}
$$

Background Image

- The first image of a sequence without any moving objects, is background image.
- Median filter
$B(x, y)=\operatorname{median}\left(f_{1}(x, y), \ldots, f_{n}(x, y)\right)$

PFINDER

Pentland

Pfinder

- Segment a human from an arbitrary complex background.
- It only works for single person situations.
- All approaches based on background modeling work only for fixed cameras.

Algorithm

- Learn background model by watching 30 second video
- Detect moving object by measuring deviations from background model
- Segment moving blob into smaller blobs by minimizing covariance of a blob
- Predict position of a blob in the next frame using Kalman filter
- Assign each pixel in the new frame to a class with max likelihood.
- Update background and blob statistics

Learning Background Image

- Each pixel in the background has associated mean color value and a covariance matrix.
- The color distribution for each pixel is described by a Gaussian.
- YUV color space is used.

Detecting Moving Objects

- After background model has been learned, Pfinder watches for large deviations from the model.
- Deviations are measured in terms of Mahalanobis distance in color.
- If the distance is sufficient then the process of building a blob model is started.

Detecting Moving Objects

- For each of k blob in the image, log-
likelihood is computed

$$
d_{k}=-.5\left(y-\mu_{k}\right)^{T} K_{k}^{-1}\left(y-\mu_{k}\right)-.5 \ln \left|K_{k}\right|-.5 m \ln (2 \lambda)
$$

- Log likelihood values are used to classify pixels

$$
s(x, y)=\arg \max _{k}\left(d_{k}(x, y)\right)
$$

Updating

-The statistical model for the background is updated.

$$
\begin{aligned}
& K^{t}=E\left[\left(y-\mu^{t}\right)\left(y-\mu^{t}\right)^{T}\right] \\
& \mu^{t}=(1-\alpha) \mu^{t-1}+\alpha y
\end{aligned}
$$

- The statistics of each blob (mean and covariance) are re-computed.

