## Lecture-6

## Mann \& Picard

Projective

## Projective Flow (weighted)

$u_{f} f_{x}+v_{f} f_{y}+f_{t}=0 \quad \begin{aligned} & \text { Optical Flow const. } \\ & \text { equation }\end{aligned}$
$\mathbf{u}_{m}^{T} \mathbf{f}_{\mathbf{x}}+f_{t}=0$
$\mathbf{x}^{\prime}=\frac{A \mathbf{x}+\mathbf{b}}{\mathbf{C}^{\mathbf{T}} \mathbf{x}+1} \quad$ Projective transform
$\mathbf{u}_{m}=\mathbf{x}^{\prime}-\mathbf{x}=\frac{A \mathbf{x}+\mathbf{b}}{\mathbf{C}^{\mathbf{T}} \mathbf{x}+1}$

## Projective Flow (weighted)

$$
\begin{aligned}
\boldsymbol{\varepsilon}_{\text {flow }} & =\sum\left(\mathbf{u}_{\mathbf{m}}^{\mathbf{T}} \mathbf{f}_{\mathbf{x}}+f_{\mathbf{t}}\right)^{2} \\
& =\sum\left(\left(\frac{A \mathbf{x}+\mathbf{b}}{\mathbf{C x}^{\mathbf{T}}+1}-\mathbf{x}\right)^{T} \mathbf{f}_{\mathbf{x}}+f_{t}\right)^{2} \\
& =\sum\left(\left(\mathbf{A x}+\mathbf{b}-\left(\mathbf{C}^{\mathrm{T}} \mathbf{x}+1\right) x\right)^{T} \mathbf{f}_{x}+\left(\mathbf{C}^{T} \mathbf{x}+1\right) f_{t}\right)^{2} \\
& \square \text { minimize }
\end{aligned}
$$

$$
\begin{gathered}
\text { Projective Flow (weighted) } \\
\left(\sum \phi \phi^{T}\right) \mathbf{a}=\sum\left(\mathbf{x}^{\mathrm{T}} \mathbf{f}_{x}-f_{t}\right) \phi \\
a=\left[a_{11}, a_{12}, b_{1}, a_{21}, a_{22}, b_{2}, c_{1}, c_{2}\right]^{T} \\
\phi^{\prime}=\left[f_{x} x, f_{x} y, f_{x}, f_{y}, x, f_{y}, f_{f}, x f_{1}-x^{2} f_{x}-x y f_{y}, v f_{1}-x y f_{x}-y^{2} f_{y}\right]
\end{gathered}
$$

## Projective Flow (unweighted)

## Bilinear

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\frac{A \mathbf{x}+\mathbf{b}}{\mathbf{C}^{\mathbf{T}} \mathrm{x}+1} \\
u_{m}+x & =a_{1}+a_{2} x+a_{3} y+a_{4} x y \\
v_{m}+y & =a_{5}+a_{6} x+a_{7} y+a_{8} x y
\end{aligned}
$$

## Pseudo-Perspective

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\frac{A \mathbf{x}+\mathbf{b}}{\mathbf{C}^{\mathbf{T}} \mathbf{x}+1} \\
x+u_{m} & =a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} x y \\
y+v_{m} & =a_{6}+a_{7} x+a_{8} y+a_{4} x y+a_{5} y^{2}
\end{aligned}
$$

## Projective Flow (unweighted) <br> $$
\varepsilon_{\text {flow }}=\sum\left(\mathbf{u}_{\mathbf{m}}^{\mathbf{T}} \mathbf{f}_{\mathbf{x}}+f_{\mathbf{t}}\right)^{2}
$$ <br> $\sqrt{\}}$ Minimize

## Bilinear and Pseudo-Perspective

$\left(\sum \Phi \Phi^{T}\right) \mathbf{q}=-\sum f_{t} \Phi$
$\Phi^{T}=\left[f_{x}(x y, x, y, 1), \quad f_{y}(x y, x, y, 1)\right]$
$\Phi^{T}=\left\lvert\, \begin{array}{llll}f_{x}(x, y, 1) & f_{v}(x, y, 1) & c_{1} & c_{2}\end{array} \quad\right.$ bilinear
$c_{1}=x^{2} f_{x}+x y f_{x} \quad$ Pseudo perspective
$c_{2}=x y f_{x}+y^{2} f_{y}$

## Algorithm-1

- Estimate "q" (using approximate model, e.g. bilinear model).
- Relate "q" to "p"
- select four points S1, S2, S3, S4
- apply approximate model using "q" to compute $\left(x_{k}^{\prime}, y_{k}^{\prime}\right)$
- estimate exact "p":


$$
\begin{gathered}
\text { True Projective } \\
x^{\prime}=\frac{a_{1} x+a_{2} y+b_{1}}{c_{1} x+c_{2} y+1} \\
y^{\prime}=\frac{a_{3} x+a_{4} y+b_{1}}{c_{1} x+c_{2} y+1} \\
{\left[\begin{array}{l}
x_{k}^{\prime} \\
y_{k}^{\prime}
\end{array}\right]=\left[\begin{array}{llllllll}
x_{k} & y_{k} & 1 & 0 & 0 & 0 & -x_{k} x_{k}^{\prime} & -y_{k} x_{k}^{\prime} \\
0 & 0 & 0 & x_{k} & y_{k} & 1 & -x_{k} y_{k}^{\prime} & -y_{k} y_{k}^{\prime}
\end{array}\right] \mathbf{a}} \\
\mathbf{a}=\left[\begin{array}{llllllll}
a_{1} & a_{2} & b_{1} & a_{3} & a_{4} & b_{2} & c_{1} & c_{1}
\end{array}\right]^{T}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
\\
x_{k}^{\prime} \\
y_{k}^{\prime}
\end{array}\right]=\left[\begin{array}{cccccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1} x_{1}^{\prime} & -y_{1} x_{1}^{\prime} \\
0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1} y_{1}^{\prime} & -y_{1} y_{1}^{\prime} \\
& & & & & & & \\
x_{k} & y_{k} & 1 & 0 & 0 & 0 & -x_{k} x^{\prime} & -y_{k} x_{k}^{\prime} \\
0 & 0 & 0 & x_{k} & y_{k} & 1 & -x_{k} y_{k}^{\prime} & -y_{k} y^{\prime}
\end{array}\right] \mathbf{a}} \\
& \mathbf{P}=\mathbf{A a}
\end{aligned}
$$

Perform least squares fit to compute a.

## Final Algorithm

- A Gaussian pyramid of three or four levels is constructed for each frame in the sequence.
- The parameters "p" are estimated at the top level of the pyramid, between the two lowest resolution images, "g" and "h", using algorithm-1.


## Final Algorithm

- The estimated "p" is applied to the next higher resolution image in the pyramid, to make images at that level nearly congruent.
- The process continues down the pyramid until the highest resolution image in the pyramid is reached.


## Video Mosaics

- Mosaic aligns different pieces of a scene into a larger piece, and seamlessly blend them.
- High resolution image from low resolution images
- Increased filed of view


## Steps in Generating A Mosaic

- Take pictures
- Pick reference image
- Determine transformation between frames
- Warp all images to the same reference view


## Applications of Mosaics

- Virtual Environments
- Computer Games
- Movie Special Effects
- Video Compression



## Sequence of Images



## Affine Mosaic



## Building




## Scientific American Frontiers



## Scientific American Frontiers



## MIT Media Lab



## Webpages

- http://n1nlf1.eecg.toronto.edu/tip.ps.gz

Video Orbits of the projective group, S. Mann and R. Picard.

- http://wearcam.org/pencigraphy (C code for generating mosaics)


## Webpages

- http://ww-bcs.mit.edu/people/adelson/papers.html
- The Laplacian Pyramid as a compact code, Burt and Adelson, IEEE Trans on Communication, 1983.
- J. Bergen, P. Anandan, K. Hanna, and R. Hingorani, "Hierarchical Model-Based Motion Estimation", ECCV-92, pp 237-22.


## Webpages

- http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/ v -source.html (c code for several optical flow algorithms)
- ftp://csd.uwo.ca/pub/vision Performance of optical flow techniques (paper)
Barron, Fleet and Beauchermin


## Webpages

- http://www.wisdom.weizmann.ac.i1/~irani/abstract $\mathrm{s} /$ mosaics.html ("Efficient representations of video sequences and their applications", Michal Irani, P. Anandan, Jim Bergen, Rakesh Kumar, and Steve Hsu)
- R. Szeliski. "Video mosaics for virtual environments", IEEE Computer Graphics and Applications, pages,22-30, March 1996.
- M. Irani and P. Anandan, Video Indexing Based on Mosaic Representations. Proceedings of IEEE, May, 1998.
- http://www.wisdom.weizmann.ac.il/~irani/a bstracts/videoIndexing.html

