Lecture-7

Video Compression

Mubarak Shah

What is Compression?

• Compression is a process of converting data into a form requiring less space to store or less time to transmit, which permits the original data to be reconstructed with acceptable precision at a later time.

Orange Juice Analogy!

- Freshly squeezed orange juice (uncompressed)
- Remove water (redundancy), convert it to concentrate (encoding)
- Shipped, stored, and sold.
- Add water to concentrate (decoding), tastes like freshly squeezed!!!

Why is compression necessary?

- Storage space limitations
- Transmission bandwidth limitations.

Resolution

- QCIF: 180 x 144
- MPEG: 352 x 288
- VGA: 640 x 480
- NTSC 720x486
- Workstation 1280x1024
- HDTV: 1920 x 1080
- 35mm slide: 3072 x 2048

Floppy Disk

- Floppy disk capacity = 1.44 MB
- A single 1280x1024x24 image= 3.9 MB
- A single 640x480x24=922kB
- Floppy disk holds only one VGA image!

CD-ROM

- Capacity=600 MB
- A 1280x1024x24 @30 fps=118MB/s
- CD-ROM would hold only about 5 sec of video!
- A 160x120x16 image @30 fps=1.15MB/sec
- CD-ROM now holds 8.7 minutes of video

DVD-ROM

- Capacity 2.4 GB to 15.9 GB
- Single side/single layer→Double side/dual layers
- 4.4 to 25 times capacity of CD ROM
- 20 sec to 2 minutes of 1280x1024x24 @30 fps
- 3 hours of 160x120x16 image @30 fps

Digital TV

- Networks started broadcasting limited DTV programs in Nov 98.
- All commercial stations are supposed to switch to DTV by 2002
- All stations are supposed to switch to DTV by 2003
- Govt wants broadcasters' NTSC channels returned by 2006 for auctioning!

Why is compression acceptable?

- Limitations of visual perception
 - Number of shades (colors, gray levels) we can perceive
 - Reduced sensitivity to noise in highfrequencies (e.g. edges of objects)
 - Reduced sensitivity to noise in brighter areas
- Ability of visual perception
 - Ability of the eye to integrate spatially
 - Ability of the mind to interpolate temporally

Why is compression possible?

- Some sample values (gray levels, colors) are more likely to occur at a particular pixel than others.
 - Remove spatial and temporal redundancy that exist in natural video
 - Correlation itself can be removed in a lossless fashion
 - Important to medical applications
 - Only realizes about 2:1 compression

Lossless Compression

- Needed when loss is unacceptable or highly undesirable
- Fixed compression ratio is hard to achieve
- Compression/decompression time varies with image

Lossy Compression

- Used when loss is acceptable or inevitable
- Permits fixed compression ratios
- Better suited for fixed time decompression

Compression Techniques

- Subsampling
- Quantization
- Delta Coding
- Prediction
- Color space conversion
- Huffman coding
- Run-length encoding
- De-correlation
- Motion Compensation
- Model-based compression

Quantization

- Truncation and Rounding
- Quantized levels need not be evenly spaced
- Can be used for relative as well as absolute information
- Information is lost in quantiztion, but the error can be recovered

Delta Coding

- But most deltas will be small.
 - Smaller deltas can be assigned shorter codes
 - Smaller deltas can be ignored completely
 - smaller deltas can be quantized more finally for better quality
- Complementary delta values can share a code; e.g., +1 and -255 yield same result in 8 bit positive value.
- 9 bits are not required!

Prediction

- Prediction further reduces delta values.
- In delta coding prediction is the last pixel
- Better prediction algorithm means better compression ratio.
- It can improve picture quality

Prediction

- Use left pixel (delta coding)
- Use linear interpolation (left+(leftprevious))
- Use 2d interpolation (left+above-corner)

Color Spaces

- R, G, B
- Y, Cb, Cr
- Y, I, Q
- C, M, Y
- I, H, S
- Y, U, V

Y, I, Q

$$Y = .3R + .59G + .11B$$

 $I = .6R + .28G - .32B$
 $Q = .21R - .52G + .31B$
I=Red-Cyan
Q=magenta-green
Y=white-black

C, M, Y

$$C = 1 - R$$

 $M = 1 - G$
 $Y = 1 - B$
Cyan, Magenta and Yellow: Primary
colors of pigments.

Intensity, Hue and Saturation

$$I = R + G + B$$

 $S = 1 - 3 \frac{\min(R, G, B)}{I}$
 $h = \cos^{-1} \left\{ \frac{\frac{1}{2}[(R - G) + (R - B)]}{\sqrt{(R - G)^2 + (R - B)(G - B))}} \right\}$
Saturation measures lack of whiteness in the colo

Saturation measures lack of whiteness in the color. Hue is proportional to the average wavelength of the color. (A "deep", "bright" "orange".) (245,110,20)

Discrete Cosine Transform

$$C(u,v) = \mathbf{a}(u)\mathbf{a}(v)\sum_{x=0}^{N-1}\sum_{y=0}^{N-1}f(x,y)\cos\left[\frac{(2x+1)u\mathbf{p}}{2N}\right]\cos\left[\frac{(2y+1)v\mathbf{p}}{2N}\right]$$

$$f(x,y) = \sum_{u=0}^{N-1}\sum_{v=0}^{N-1}\mathbf{a}(u)\mathbf{a}(v)C(u,v)\cos\left[\frac{(2x+1)u\mathbf{p}}{2N}\right]\cos\left[\frac{(2y+1)v\mathbf{p}}{2N}\right]$$

$$\mathbf{a}(u) = \begin{cases} \sqrt{\frac{1}{N}} & u = 0\\ \sqrt{\frac{2}{N}} & u = 1, 2, \dots N - 1 \end{cases}$$

Other Techniques

- Fractals
- Wavelets
- Vector Quantization
- K-L Transform
- ...

Compression using original source

- For best compression, get the original source material and try to *understand* its properties.
 - Email messages are far smaller than fax, voice mail or video mail.
 - A musical score is far more compact than a digitized recording

Compression of Synthesized Image or Video

• For synthesized image or video clip it is far more efficient to transmit original source material and re-synthesized the image or clip at the receiver than to transmit the compressed image or video clip.

How to Select Compression Scheme?

- High quality reproduction?
- Very high compression ratio?
- Fixed compression ratio?
- Real-time compression?
- Real-time decompression?
- Limited de-compression computer power?

RLE: Example														
8	[0	0	0	0	0	0	0	0]						
0, 4, 4	1	1	1	1	0	0	0	0						
1, 2, 5	0	1	1	0	0	0	0	0						
1, 5, 2	0	1	1	1	1	1	0	0						
1, 3, 2, 1, 1	0	1	1	1	0	0	1	0						
2, 1, 2, 2, 1 0 4 1 1 2	0	0	1	0	0	1	1	0						
8	1	1	1	1	0	1	0	0						
-	0	0	0	0	0	0	0	0						

JPEG Baseline Coding

- Divide image into blocks of size 8X8.
- Level shift all 64 pixels values in each block by subtracting 2ⁿ⁻¹, (where 2ⁿ is the maximum number of gray levels).
- Compute 2D DCT of a block.
- Quantize DCT coefficients using quantization table.

- Zig-zag scan the quantized DCT coefficients to form 1-D sequence.
- Code 1-D sequence (AC and DC) using JPEG Huffman variable length codes.

JPI	EG	ZIC	G-Z	AC	3 S(CAI	N
1	2	6	7	15	16	28	29
3	5	8	14	17	27	30	43
4	9	13	18	26	31	42	44
10	12	19	25	32	41	45	54
11	20	24	33	40	46	53	55
21	23	34	39	47	52	56	61
22	35	38	48	51	57	60	62
36	37	49	50	58	59	63	64

JPEG Coefficient Coding Categories											
Range	DC	AC									
0	0	N/A									
-1,1	1	1									
-3,-2,2,3	2	2									
-7,,-4,4,,7	3	3									
-15,,-8,8,,15	4	4									
 -32767,,32767	 F	 N/A									

JPEG DC Code											
Cat	Base Code	Length									
0	010	3									
1	011	4									
2	100	5									
3	00	5									
4	101	7									
5	110	8									
6	1110	10									
7	11110	12									
8	111110	14									
9	1111110	16									
А	11111110	18									
В	111111110	20									

	JPEG AC Code	
Run/Cat	Base Code	Length
(0,0)	1010(EOB)	4
(0,1)	00	3
(0,2)	01	4
(0,3)	100	б
(0,4)	1011	8
(0,5)	11010	10
(0,6)	111000	12
(0,7)	1111000	14
(0,8)	1111110110	18
(0,9)	1111111110000010	25
•••		

Construction of JPEG Code

- Compute difference between the current DC coefficient and that of previously encoded block.
- Determine DC category of difference, and use the base code.
- Generate remaining bits of code from the LSB (Least Significant Bits) of the difference.

					E	xa	mj	pl	e ((Er	nco	bd	ing	g)				
	52	55	61	66	70	61	64	73		[-76	-73	-67	- 62	-58	-67	7 –	-64	-55]
	63	59	66	90	109	85	69	72		-65	-69	-62	-38	-19	-43	3 -	- 59	-56
	62	59	68	113	144	104	66	73		-66	-69	-60	-15	16	-24	4 –	62	-55
,	63	58	71	122	154	106	70	69	I' =	-65	-70	-57	-6	26	-22	2 -	-58	-59
1 =	67	61	68	104	126	88	68	70	-	- 61	-67	-60	- 24	-2	-40) -	-60	-58
	79	65	60	70	77	68	58	75		-49	-63	-68	-58	-51	-65	5 -	·70	-53
	85	71	64	59	55	61	65	83		-43 - 41	-3/ -49	- 04 - 59	- 69 - 60	- /3 -63	- 5	/ - ? _	- 63	-45
	87	79	69	68	65	76	78	94		ι "'	77	57	00	05	51		50	54]
	۔ ۲۰	-415	-29	-62	25	55	-20	-1	3]		[-26	-3	-6	2	2	0	0	0]
		7	-21	-62	9	11	-7	-6	6		1	-2	-4	0	0	0	0	0
		-46	8	77	-25	-30	10	7	-5		-3	1	5	-1	-1	0	0	0
DCT	r=	-50	13	35	-15	-9	6	0	3		-4	1	2	-1	0	0	0	0
201		-11	-8	-13	-2	-1	1	-4	1	Q' =		0	-	0	õ	õ	õ	
		-10	1	3	-3	-1	0	2	-1			0	0	0	0	0	0	
		-4	-1	2	-1	2	-3	1	-2		0	0	0	0	0	0	0	0
	L	-1	-1	-1	-2	-1	-1	0	-1		0	0	0	0	0	0	0	0
											0	0	0	0	0	0	0	0

	Comparison																
	52	55	61	66	70	61	64	73		58	64	67	64	59	62	70	78]
	63	59	66	90	109	85	69	72		56	55	67	89	98	88	74	69
	62	59	68	113	144	104	66	73	<i>P'''</i> =	60	50	70	119	141	116	80	64
<i>I</i> –	63	58	71	122	154	106	70	69		69	51	71	128	149	115	77	68
1 -	67	61	68	104	126	88	68	70		74	53	64	105	115	84	65	72
	79	65	60	70	77	68	58	75		76	57	56	74	75	57	57	74
	85	71	64	59	55	61	65	83		83	69	59	60	61	61	67	78
	87	79	69	68	65	76	78	94		93	81	67	62	69	80	84	84
	Original Image Decoded Image													ge			

MPEG-1 & MPEG -2 Artifacts

• Blockiness

- poor motion estimation
- seen during dissolves and fades
- Mosquito Noises
 - edges of objects (high frequency DCT terms)
- Dirty Window
 - streaks or noise remain stationary while objects move

- Wavy Noise
 - seen during pans across crowds
 - coarsely quantized high frequency terms cause errors

Where MPEG-2 will fail?

- Motions which are not translation
 - zooms
 - rotations
 - non-rigid (smoke)
 - dissolves
- Others
 - shadows
 - scene cuts
 - changes in brightness

Video Compression At Low Bitrate

- The quality of block-based coding video (MPEG-1 & MPEG-2) at low bitrate, e.g., 10 kbps is very poor.
 - Decompressed images suffer from blockiness artifacts
 - Block matching does not account for rotation, scaling and shear

Model-Based Video Coding

Model-Based Compression

- Object-based
- Knowledge-based
- Semantic-based

Model-Based Compression

- Analysis
- Synthesis
- Coding

Video Compression

- MC/DCT (MPEG-1 & 2)
 - Source Model: translation motion only
 - Encoded Information: Motion vectors and color of blocks
- Object-Based
 - Source Model: moving unknown objects
 - translation only
 - affine
 - affine with triangular mesh
 - Encoded Information: Shape, motion, color of each moving object

Video Compression

- Knowledge-Based
 - Source Model: Moving known objects
 - Encoded Information: Shape, motion and color of known objects
- Semantic
 - Source Model: Facial Expressions
 - Encoded Information: Action units