Lecture-18

Block-based \& Token-based Optical

Flow

Block Matching

Frame k-1

Frame k

Origin is at bottom right corner

Block Matching

- For each 8X8 block, centered around pixel (x, y) in frame $\mathrm{k}, \mathrm{B}_{\mathrm{k}}$
- Obtain 16X16 block in frame k-1, enclosing (x,y), $\mathrm{B}_{\mathrm{k}-1}$
- Compute Sum of Squares Differences (SSD) between 8X8 block, B_{k}, and all possible 8X8 blocks in $\mathrm{B}_{\mathrm{k}-1}$
- The 8X8 block in $\mathrm{B}_{\mathrm{k}-1}$ centered around ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$), which gives the least SSD is the match
- The displacement vector (optical flow) is given by $u=x$ x'; v=y-y'

Sum of Squares Differences (SSD)

$(u(x, y), v(x, y))=\arg \min _{\substack{u=0 . \ldots-8 \\ v=0 . .8}} \sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)-f_{k-1}(x+i+u, y+j+v)\right)^{2}$
Frame k-1 Frame k

Origin is at bottom right corner

Minimum Absolute Difference (MAD)

$(u(x, y), v(x, y))=\arg \min _{\substack{u=0 \ldots-8 \\ v=0 . .8}} \sum_{i=0}^{-7} \sum_{j=0}^{7}\left|\left(f_{k}(x+i, y+j)-f_{k-1}(x+i+u, y+j+v)\right)\right|$

Maximum Matching Pixel Count (MPC)

$$
\begin{aligned}
& T(x, y ; u, v)=\left\{\begin{array}{lc}
1 & \text { if }\left|f_{k}(x, y)-f_{k-1}(x+u, y+v)\right| \leq t \\
0 & \text { Otherwise }
\end{array}\right. \\
& (u(x, y), v(x, y))=\arg \max _{\substack{u=0 . \ldots-8 \\
v=0 . .8}} \sum_{i=0}^{-7} \sum_{j=0}^{7} T(x+i, y+j ; u, v)
\end{aligned}
$$

Cross Correlation

$$
(u, v)=\arg \max _{\substack{u=0 . \ldots-8 \\ v=0 \ldots 8}} \sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)\right) \cdot\left(f_{k-1}(x+i+u, y+j+v)\right)
$$

Potential problem
$(u(x, y), v(x, y))=\arg \min \underset{\substack{u=0 . .-8 \\ v=0 . .8}}{ } \sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)-f_{k-1}(x+i+u, y+j+v)\right)^{2}$
$(u(x, y), v(x, y))=\arg \min \underset{\substack{u=0 \ldots-8 \\ v=0 \ldots 8}}{ } \sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}^{2}-2 f_{k} f_{k-1}+f_{k-1}^{2}\right)$

Normalized Correlation

$(u, v)=\arg \max _{\substack{u=0 . \ldots-8 \\ v=0 . \ldots 8}}^{\sqrt{\sum_{i=0}^{j} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)\right) \cdot\left(f_{k-1}(x+i+u, y+j+v)\right)}} \sqrt{\sqrt{\sum_{i=0}^{-7} \sum_{j=0}^{7}} f_{k-1}(x+i+u, y+j+v) \cdot f_{k-1}(x+i+u, y+j+v)}$

Mutual Correlation

$$
(u, v)=\arg \max _{\substack{u=0 . \ldots-8 \\ v=0 . .8}} \frac{1}{64 \sigma_{1} \sigma_{2}} \sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)-\mu_{1}\right) \cdot\left(f_{k-1}(x+i+u, y+j+v)-\mu_{2}\right)
$$

Sigma and mu are standard deviation and mean of patch-1 and patch-2 respectively

$$
\begin{gathered}
\text { Correlation Using FFT } \\
\begin{array}{c}
C(u, y)=\sum_{i=0}^{-7} \sum_{j=0}^{7}\left(f_{k}(x+i, y+j)\right) \cdot\left(f_{k-1}(x+i+u, y+j+v)\right) \\
c(u, v)=f(x, y) \otimes g(x, y) \\
C\left(w_{1}, w_{2}\right)=F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)
\end{array}
\end{gathered}
$$

Append smaller patch with zeros to make it equal to bigger patch Find FFT of reference $(f(x, y)$ and mission $(g(x, y))$ patches multiply two FFTs
Find inverse FFT of the product, this will give you a correlation surface Find the peak in the correlation surface
This method is faster for a large patch size

Phase Correlation

```
\(c(x, y)=f(x, y) \otimes g(x, y)\)
\(C\left(w_{1}, w_{2}\right)=F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)\)
\(\tilde{C}\left(w_{1}, w_{2}\right)=\frac{F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)}{\left|F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)\right|}\)
Assume
\(f(u, v)=g(x+u, y+v)\)
Then
\(F\left(w_{1}, w_{2}\right)=G\left(w_{1}, w_{2}\right) e^{-\left(i\left(w_{1} u+w_{2} v\right)\right)}\)
Now
\(\tilde{C}\left(w_{1}, w_{2}\right)=\frac{F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)}{\left|F\left(w_{1}, w_{2}\right) \cdot G\left(w_{1}, w_{2}\right)\right|}=\frac{G\left(w_{1}, w_{2}\right) e^{-\left(i\left(w_{1} u+w_{2} v\right)\right)} \cdot G\left(w_{1}, w_{2}\right)}{\left|G\left(w_{1}, w_{2}\right) e^{-\left(i\left(w_{1} u+w_{2} v\right)\right)} \cdot G\left(w_{1}, w_{2}\right)\right|}=e^{-\left(i\left(w_{1} u+w_{2} v\right)\right)}\) \(c(x, y)=\boldsymbol{\delta}(x-u, y-v)\)
```

So it is very easy to find the peak in the correlation surface

Issue with Correlation

- Patch Size
- Search Area
- How many peaks
- Should use pyramids here too for large displacements

Token-based Optical Flow

- Find tokens
- Moravec's interest operator
- Corners
- Edges
- Solve point correspondence

Point Correspondence

- Given n video frames taken at different time instants and m points in each frame, the motion correspondence problem deals with a mapping of a point in one frame to another point in the second frame such that no two points map onto the same point.

Key Points

- Constraints \rightarrow Cost Function
- Algorithm \rightarrow Minimize the cost function

Constraints

Proximal Uniformity Constraint

- Most objects in the real world follow smooth paths and cover small distance in a small time.
- Given a location of point in a frame, its location in the next fame lies in the proximity of its previous location.
- The resulting trajectories are smooth and uniform.

Proximal Uniformity Constraint

Proximal Uniformity Constraint

Establish correspondence by minimizing:
$\delta\left(X_{p}^{k-1}, X_{q}^{k}, X_{r}^{k+1}\right)=\frac{\left\|\overline{X_{p}^{k-1} X_{q}^{k}}-\overline{X_{q}^{k} X_{r}^{k+1}}\right\|}{\sum_{x=1}^{m} \sum_{z=1}^{m} \mid \overline{X_{x}^{k-1} X_{y}^{k}}-\overline{X_{y}^{k} X_{z}^{k+1}} \|}+\frac{\left\|\overline{X_{q}^{k} X_{r}^{k+1}}\right\|}{\sum_{x=1}^{m} \sum_{z=1}^{m}\left\|\overline{X_{y}^{k} X_{z}^{k+1}}\right\|}$

Initial correspondence is known, for each x in the denominator of the first term y is known.

Greedy Algorithm

- For $\mathrm{k}=2$ to $\mathrm{n}-1$ do
- Construct M, an mxm matrix, with the points from k-th frame along the rows and points from $(k+1)$-th frame along the columns. Let

$$
M[i, j]=\boldsymbol{\delta}\left(X_{p}^{k-1}, X_{q}^{k}, X_{r}^{k+1}\right)
$$

- for $\mathrm{a}=1$ to m do
- Identify the minimum element $\left[i, l_{i}\right]$ in each row i of M
- Compute priority matrix, B, such that $B\left[i, l_{i}\right]=\sum_{j=1, j \neq l_{i}}^{m} M[i, j]+\sum_{k=1, k \neq i}^{m} M\left[k, l_{i}\right]$
for each i.
- Select $\left[i, l_{i}\right]$ pair with highest priority value and make $\phi^{k}(i)=l$
- Mask row i and column $\quad l_{i}$ from M.
http://www.cs.ucf.edu/~vision/papers/PAPER3.PDF

Tracking Finger Tips

