Lecture-9

Region Segmentation

Program-I (due Feb 22)

- Implement Canny edge detector in C (either on PC, or on Unix).
- Implement all steps of Canny
- Compute gradient using first derivative of Gaussian masks
- Perform non-maxima suppression using gradient direction
- Hysteresis threshold non-maxima suppressed gradient magnitude
- You should ask user to input image name (in pgm format), sigma for Gaussian, high and low thresholds
- Display edge image
- Write a short report (1-2 pages):
- Method used
- Problems/difficulties
- Analysis of results.
- Demonstrate your program in the vision lab (time to be fixed later) on un-seen images.

Program-I (due Feb 22)

- Implement Haralick's edge detector in C (either on PC, or on Unix).
- Implement all steps of Canny
- Fit a bi-cubic polynomial to a small neighborhood of a pixel (compute $k \mathrm{~s}$).
- Compute second and third directional derivatives
- Detect edges if the second directional derivative is zero, and third is negative
- You should ask user to input image name (in pgm format) and rho
- Display edge image
- Write a short report (1-2 pages):
- Method used
- Problems/difficulties
- Analysis of results.
- Demonstrate your program in the vision lab (time to be fixed later) on un-seen images.

Homework-2 (Due Feb 27)

- Problems 7, 8, 9 and 10 from Chapter 2.

Segmentation

R0

Segmentation

- Partition $f(x, y)$ into sub-images: $R_{1}, R_{2}, \ldots, R_{n}$ such that the following constraints are satisfied:
$-\quad \bigcup_{i=1}^{n} R_{i}=f(x, y)$
$-\quad R_{i} \cap R_{j}=\phi, i \neq j$
- Each sub-mage satisfies a predicate or set of predicates
- All pixels in any sub-image musts have the same gray levels.
- All pixels in any sub-image must not differ more than some threshold
- All pixels in any sub-image may not differ more than some threshold from the mean of the gray of the region
- The standard deviation of gray levels in any sub-image must be small.

Simple Segmentation

$$
\begin{aligned}
& B(x, y)=\left(\begin{array}{ll}
1 & \text { if } f(x, y)<T \\
0 & \text { Otherwise }
\end{array}\right. \\
& B(x, y)=\left(\begin{array}{ll}
1 & \text { if } T_{1}<f(x, y)<T_{2} \\
0 & \text { Otherwise }
\end{array}\right. \\
& B(x, y)=\left(\begin{array}{ll}
1 & \text { if } f(x, y) \in Z \\
0 & \text { Otherwise }
\end{array}\right.
\end{aligned}
$$

Histogram

Histogram graphs the number of pixels in an image with a Particular gray level as a function of the image of gray levels.

For ($\mathrm{I}=0, \mathrm{I}<\mathrm{m}, \mathrm{I}^{++}$)
For $\left(\mathrm{J}=0, \mathrm{~J}<\mathrm{m}, \mathrm{J}^{++}\right)$
histogram $[\mathrm{f}(\mathrm{I}, \mathrm{J})]^{++}$;

Example

Segmentation Using Histogram

$$
\begin{gathered}
B_{1}(x, y)=\left(\begin{array}{ll}
1 & \text { if } 0<f(x, y)<T_{1} \\
0 & \text { Otherwise }
\end{array}\right. \\
B_{2}(x, y)=\left(\begin{array}{ll}
1 & \text { if } T_{1}<f(x, y)<T_{2} \\
0 & \text { Otherwise }
\end{array}\right. \\
B_{3}(x, y)=\left(\begin{array}{ll}
1 & \text { if } T_{2}<f(x, y)<T_{3} \\
0 & \text { Otherwise }
\end{array}\right.
\end{gathered}
$$

Realistic Histogram

Peakiness Test

Peakiness $=\left(1-\frac{\left(V_{a}+V_{b}\right)}{2 P}\right)\left(1-\frac{N}{(W . P)}\right)$

Connected Component

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 0 & 0 & a & 0 \\
b & b & 0 & a & a \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & c & c & 0 \\
0 & d & 0 & c & 0
\end{array}\right]
$$

Connectedness

Figure 3.6: Pixel connectedness. (a) 4-connected. (b) 8-connected. (c) 6-connected.

Connected Component

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 0 & 0 & a & 0 \\
b & b & 0 & a & a \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & c & c & 0 \\
0 & c & 0 & c & 0
\end{array}\right]
$$

Recursive Connected Component Algorithm

1. Scan the binary image left to right, top to bottom.
2. If there is an unblacled pixel with a value of "1" aseign a oew label to it.
3. Recursively check the neighbors of the pixel in step 2 and assign the same label if they are unlabeled with a value of ' 1 ".
4. Stop when all the pixel of value ' 1 ' have been labeled.

Figure 3.7: Recarvive Connected Component Algaithm.

Sequential

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 0 & 0 & a & 0 \\
b & b & 0 & a & a \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & c & c & 0 \\
0 & d & c & c & 0
\end{array}\right] \quad d=c
$$

Sequential Connected Component Algorithm

1. Scan the binary image left to right, top to bottom.
2. If an unlabelod pixel hes a value of ${ }^{-17}$, assign a new label to it according to the following rules:
$\begin{array}{ll} & 0 \\ 0 & 1\end{array} 0_{0}^{0} \mathrm{~L}$
$\begin{array}{ll} \\ \text { L. } & \\ 1\end{array} \mathrm{~L}^{0} \begin{aligned} & 0 \\ & \mathrm{~L}\end{aligned}$
${ }_{0} \stackrel{\mathrm{~L}}{\mathrm{~L}} \rightarrow_{0}^{\mathrm{L}}$
$\mathrm{M} \mathrm{I}_{\mathrm{M}}^{\mathrm{L}}{ }_{\mathrm{M}}^{\mathrm{L}} \stackrel{\mathrm{L}}{\mathrm{L}}($ Set $L=M)$.
3. Determine equivalence clases of Jabels.
4. In the second pases, assign the semme label to all elements in an expivakence class.

Figure 3.8: Sequential Connected Component Algorithm.

Recursive

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 0 & 0 & a & 0 \\
b & b & 0 & a & a \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & c & c & 0 \\
0 & c & c & c & 0
\end{array}\right]
$$

Steps in Segmentation Using Histogram

1. Compute the histogram of a given image.
2. Smooth the histogram by averaging peaks and valleys in the histogram.
3. Detect good peaks by applying thresholds at the valleys.
4. Segment the image into several binary images using thresholds at the valleys.
5. Apply connected component algorithm to each binary image find connected regions.

Example: Detecting Fingertips

Example-II

93 peaks

Smoothed Histograms

Regions

$(0,40)$

$(40,116)$

Regions

$(116,243)$
$(243,255)$

