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Image Filtering

m Modifying the pixelsin an image based on
some function of alocal neighborhood of
the pixels
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Linear Filtering

m The output isthe linear combination of the
neighborhood pixels

f(p)= > aq
(p)
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m The coefficients of thislinear combination
combine to form the “filter-kerngl”
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Linear Filtering

Linear Filtering
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Blur examples
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Gaussian Filter
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whereH (i, j)is(2k +1)x (2k +1) array
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Gaussian Smoothing Smoothing by Averaging




Noise Filtering
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After Averaging

Gaussian Noise

Noise Filtering

Salt & Pepper Noise

After Gaussian Smoothing




Shift Invariant Linear Systems
m Superposition
R(f +g)=R(f)+R(g)

m Scaling
R(kf )= kR(f)

m Shift Invariance

Linear image transformations

 In analyzing images, it’s often useful to
make a change of basis.

transformed image
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I Fourier transform, or
Wavelet transform, or
Steerable pyramid transtorm




Self-inverting transforms

Same basis functions are used for the inverse transform
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U transpose and complex conjugate
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Fourier Transform

Continuous: F(g(x y))u.v)= [ [ a(x yle'>**)dxdy
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To get some sense of what
basis elements look like. we
plot a basis element --- or
rather, its real part ---

as a function of x.y for some
fixed u, v. We get a function
that is constant when (ux-+vy)
is constant. The magnitude of
the vector (u. v) gives a
frequency. and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the
direction.
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Phase and Magnitude

* Fourier transform of a real
function is complex
— difficult to plot. visualize
— instead. we can think of the
phase and magnitude of the
transform
» Phase is the phase of the
complex transform
* Magnitude is the

magnitude of the complex
transform

* (Curious fact

— all natural images have
about the same magnitude
transform

— hence, phase seems to
matter, but magnitude
largely doesn’t

* Demonstration

— Take two pictures. swap the
phase transforms, compute
the inverse - what does the
result look like?

Cheetah Image
Fourier Magnitude (above)
Fourier Phase (below)
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Zebralmage
Fourier Magnitude (above)
Fourier Phase (below)

Reconstruction with
Zebra phase,
Cheetah Magnitude
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Reconstruction with
Cheetah phase,
ZebraMagnitude

Suggested Reading

m Chapter 7, David A. Forsyth and Jean
Ponce, "Computer Vision: A Modern
Approach"
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