CAP5415 Computer Vision Spring 2003

Khurram Hassan-Shafique

Image Filtering

 Modifying the pixels in an image based on some function of a local neighborhood of the pixels

Linear Filtering

■ The output is the linear combination of the neighborhood pixels

$$f(p) = \sum_{q_i \in N(p)} a_i q_i$$

■ The coefficients of this linear combination combine to form the "filter-kernel"

1	3	0
2	10	2
4	1	1

$$\otimes \begin{array}{c|cccc} 1 & 0 & -1 \\ \hline 1 & 0.1 & -1 \\ \hline 1 & 0 & -1 \\ \hline \end{array}$$

5

=

Image

Kernel

Filter Output

Convolution

$$f(i,j) = I * H = \sum_{k} \sum_{l} I(k,l) H(i-k, j-l)$$

$$I = \text{Image} \qquad H_{2} H_{2} H_{3} H_{4} H_{4}$$

I = Image H = Kernel

H ₇	H ₈	H ₉	X - fli
H ₄	H ₅	H_6	
H_1	H_2	H_3	

Y - flip

	П		
,	H_1	H_2	H_3
_	H_4	H_5	H_6
	H ₇	H_8	H ₉

 $egin{array}{c|ccccc} I & I_1 & I_2 & I_3 & & \\ I_4 & I_5 & I_6 & & \\ I_7 & I_8 & I_9 & & \\ \hline \end{array}$

 $\otimes \begin{array}{|c|c|c|c|c|c|} \hline H_9 & H_8 & H_7 \\ \hline H_6 & H_5 & H_4 \\ \hline H_3 & H_2 & H_1 \\ \hline \end{array}$

 $I * H = I_1 H_9 + I_2 H_8 + I_3 H_7$ $+ I_4 H_6 + I_5 H_5 + I_6 H_4$ $+ I_7 H_3 + I_8 H_2 + I_9 H_1$

Gaussian Filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\left(x^2 + y^2\right)}{2\sigma^2}\right)$$

$$H(i, j) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{((i-k-1)^2 + (j-k-1)^2)}{2\sigma^2}\right)$$

where H(i, j) is $(2k+1) \times (2k+1)$ array

Shift Invariant Linear Systems

■ Superposition

$$R(f+g) = R(f) + R(g)$$

Scaling

$$R(kf) = kR(f)$$

■ Shift Invariance

Linear image transformations

• In analyzing images, it's often useful to make a change of basis.

Self-inverting transforms

Same basis functions are used for the inverse transform

$$\vec{f} = U^{-1}\vec{F}$$
$$= U^{+}\vec{F}$$

U transpose and complex conjugate

Fourier Transform

Continuous: $F(g(x, y))(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y)e^{-i2\pi(ux+vy)}dxdy$

Discrete
$$F[m,n] = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f[k,l] e^{-\pi i \left(\frac{km}{M} + \frac{\ln n}{N}\right)}$$

Phase and Magnitude

- Fourier transform of a real function is complex
 - difficult to plot, visualize
 - instead, we can think of the phase and magnitude of the transform
- Phase is the phase of the complex transform
- Magnitude is the magnitude of the complex transform

- · Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

Suggested Reading

■ Chapter 7, David A. Forsyth and Jean Ponce, "Computer Vision: A Modern Approach"