Multi-View Geometry (Cont.)

Stereo Constraints (Review)

Given p in left image, where can the corresponding point p ' in right image be?

Epipolar Constraint (Review)

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same planc.

All epipolar lines contain epipole, the image of other camera center.

From Geometry to Algebra (Review)

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same plane

From Geometry to Algebra (Review)

The epipolar constraint: these vectors are coplanar:

$$
\overrightarrow{O p} \cdot\left[\overrightarrow{O O^{\prime}} \times \overrightarrow{O^{\prime} p^{\prime}}\right]=0
$$

p, p 'are image coordinates of
P in $c 1$ and $c 2 \ldots$
$c 2$ is related to cl by rotation R and translation t

$$
p \cdot\left[t \times\left(\mathcal{R} p^{\prime}\right)\right]=0
$$

Linear Constraint:
Should be able to express as matrix multiplication.

The Essential Matrix (Review)

Matrix that relates image of point in one camera to a second camera, given translation and rotation.

$$
\begin{gathered}
\mathcal{E}=\left[t_{x}\right] \mathfrak{R} \\
\boldsymbol{p}^{T} \mathcal{E} \boldsymbol{p}^{\prime}=0
\end{gathered}
$$

$$
\vec{a} \times \vec{b}=\left[a_{x}\right] \vec{b}
$$

The Essential Matrix

- Based on the Relative Geometry of the Cameras
- Assumes Cameras are calibrated (i.e., intrinsic parameters are known)
- Relates image of point in one camera to a second camera (points in camera coordinate system).
- Is defined up to scale
- 5 independent parameters

The Essential Matrix

$\mathcal{E} p^{\prime}$ is the epipolar line corresponding to p ' in the left camera.

$$
\begin{gathered}
a u+b v+c=0 \\
p=(u, v, 1)^{T} \\
l=(a, b, c)^{T} \\
l \cdot p=0 \\
\mathcal{E}^{\prime} \cdot p=0 \\
\boldsymbol{p}^{T} \mathcal{E} \boldsymbol{p}^{\prime}=0
\end{gathered}
$$

Similarly \mathcal{E}_{p}^{T} is the epipolar line corresponding to p in the right camera

The Essential Matrix

$$
\mathcal{E} e^{\prime}=\left[t_{\star}\right] \mathrm{Re}^{\prime}=0
$$

Similarly, $\boldsymbol{E}^{T} e=R^{T}\left[t_{\star}\right]^{T} e=-R^{T}\left[t_{\star}\right] e=0$
Essential Matrix is singular with rank 2

Small Motions and Epipolar Constraint

Motion Models (Review)

$\left[\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right] \approx\left[\begin{array}{ccc}1 & -\gamma & \beta \\ \gamma & 1 & -\alpha \\ -\beta & \alpha & 1\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]+\left[\begin{array}{l}T_{X} \\ T_{Y} \\ T_{Z}\end{array}\right] \quad$ 3D Rigid Motion
$\left[\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ Z^{\prime}\end{array}\right] \approx\left(\left[\begin{array}{ccc}0 & -\gamma & \beta \\ \gamma & 0 & -\alpha \\ -\beta & \alpha & 0\end{array}\right]+\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]+\left[\begin{array}{l}T_{X} \\ T_{Y} \\ T_{Z}\end{array}\right] \quad\left[\begin{array}{l}V_{X} \\ V_{Y} \\ V_{Z}\end{array}\right]=\right.$ Velocity Vector
$\left[\begin{array}{c}X^{\prime}-X \\ Y^{\prime}-Y \\ Z^{\prime}-Z\end{array}\right] \approx\left[\begin{array}{ccc}0 & -\gamma & \beta \\ \gamma & 0 & -\alpha \\ -\beta & \alpha & 0\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]+\left[\begin{array}{c}T_{X} \\ T_{Y} \\ T_{Z}\end{array}\right] \quad\left[\begin{array}{l}V_{T_{X}} \\ V_{T_{Y}} \\ V_{T_{Z}}\end{array}\right]=\begin{aligned} & \text { Translational } \\ & \text { Component of Velocity }\end{aligned}$
$\left[\begin{array}{l}V_{X} \\ V_{Y} \\ V_{Z}\end{array}\right] \approx\left[\begin{array}{ccc}0 & -\omega_{Z} & \omega_{Y} \\ \omega_{Z} & 0 & -\omega_{X} \\ -\omega_{Y} & \omega_{X} & 0\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]+\left[\begin{array}{l}V_{T_{x}} \\ V_{T_{Y}} \\ V_{T_{Z}}\end{array}\right] \quad\left[\begin{array}{l}\omega_{X} \\ \omega_{Y} \\ \omega_{Z}\end{array}\right]=$ Angular Velocity

Small Motions

$t=\delta t v$
$R=I+\delta t\left[\omega_{x}\right]$
$p^{\prime}=p+\delta \dot{p}$
$p^{T} \boldsymbol{\mathcal { E }}_{p^{\prime}=0}$
$\dot{p}=\left[\begin{array}{l}V_{X} \\ V_{Y} \\ V_{Z}\end{array}\right]=$ Velocity Vector
$p^{T}\left[v_{\times}\right]\left(I+\delta t\left[\omega_{\times}\right]\right)(p+\delta t \dot{p})=0$
$v=\left[\begin{array}{l}V_{T_{x}} \\ V_{T_{7}} \\ V_{T_{z}}\end{array}\right]=\begin{aligned} & \text { Translational } \\ & \text { Component of Velocity }\end{aligned}$
$p^{T}\left(\left[v_{\times}\right]\left[\omega_{\times}\right]\right) p-(p \times \dot{p}) \cdot v=0 \quad \omega=\left[\begin{array}{c}\omega_{x} \\ \omega_{r} \\ \omega_{z}\end{array}\right]=$ Angular Velocity

Translating Camera

$\left.p^{T}\left(\left[\nu_{\times}\right] \omega_{\times}\right]\right) p-(p \times \dot{p}) \cdot v=0$
$\omega=0$
$(p \times \dot{p}) . v=0$
p, \dot{p}, and v are coplanar

Focus of expansion (FOE): Under pure translation, the motion field at every point in the image points toward the focus of expansion

FOE for Translating Camera

FOE from Basic Equations of Motion

$$
\begin{aligned}
& \dot{p}_{x}=\frac{V_{T_{z}} x-V_{T_{X}} f}{Z}-\omega_{Y} f+\omega_{Z} y+\frac{\omega_{X} x y}{f}-\frac{\omega_{Y} x^{2}}{f} \\
& \dot{p}_{y}=\frac{V_{T_{z}} y-V_{T_{x}} f}{Z}+\omega_{X} f-\omega_{z} x-\frac{\omega_{Y} x y}{f}+\frac{\omega_{x} y^{2}}{f} \\
& \dot{p}_{x}=\frac{V_{T_{z}} x-V_{T_{x}} f}{Z} \\
& \dot{p}_{y}=\frac{V_{T_{z}} y-V_{T_{Y}} f}{Z} \\
& x_{0}=f \frac{V_{T_{X}}}{V_{T_{z}}} \longrightarrow \dot{p}_{x}=\left(x-x_{0}\right) \frac{V_{T_{z}}}{Z} \\
& y_{0}=f \frac{V_{T_{Y}}}{V_{T_{z}}} \\
& \dot{p}_{y}=\left(y-y_{0}\right) \frac{V_{T_{z}}}{Z}
\end{aligned}
$$

What if Camera Calibration is not known

Review: Intrinsic Camera Parameters

Fundamental Matrix

$p^{T} \boldsymbol{\mathcal { E }}_{p^{\prime}=0} \quad p$ and p^{\prime} are in camera coordinate system
If u and u ' are corresponding image coordinates then we have
$u=P_{1} p \longrightarrow \quad \begin{gathered}p=P_{1}^{-1} u \\ u^{\prime}\end{gathered}$
$u^{\prime}=P_{2} p^{\prime} \longrightarrow p^{\prime}=P_{2}^{-1} u^{\prime}$
$u^{T} P_{1}^{-T} \mathcal{E} P_{2}^{-1} u^{\prime}=0$
$\Rightarrow u^{T} F u^{\prime}=0$

$$
F=P_{1}^{-T} \mathcal{E} P_{2}^{-1}
$$

Fundamental Matrix

$u^{T} F u^{\prime}=0$
$F=P_{1}^{-T} \boldsymbol{\mathcal { E }} P_{2}^{-1}$
Fundamental Matrix is singular with rank 2
In principal F has 7 parameters up to scale and can be estimated from 7 point correspondences

Direct Simpler Method requires 8 correspondences

Estimating Fundamental Matrix

The 8-point algorithm
$u^{T} F u^{\prime}=0$
Each point correspondence can be expressed as a linear equation
$\left[\begin{array}{lll}u & v & 1\end{array}\right]\left[\begin{array}{lll}F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33}\end{array}\right]\left[\begin{array}{c}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right]=0$
$\left[\begin{array}{lllllllll}u u^{\prime} & u v^{\prime} & u & u^{\prime} v & v v^{\prime} & v & u^{\prime} & v^{\prime} & 1\end{array}\right]\left[\begin{array}{l}F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}\end{array}\right]=0$

The 8-point Algorithm

8 corresponding points, 8 equations.

$$
\left(\begin{array}{llllllll}
u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} \\
u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} \\
u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} \\
u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} \\
u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} \\
u_{7}^{\prime} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7}^{\prime} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} \\
u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime}
\end{array}\right)\left(\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32}
\end{array}\right)=-\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Invert and solve for \mathcal{F}.
(Use more points if available; find least-squares
solution to minimize $\sum_{i=1}^{n}\left(\boldsymbol{p}_{i}^{T} \mathcal{F} \boldsymbol{p}_{i}^{\prime}\right)^{2}$)

Shape from Stereo

Pinhole Camera Model

Basic Stereo Derivations

Derive expression for Z as a function of x_{1}, x_{2}, f and B

Basic Stereo Derivations

$$
x_{1}=-f \frac{X}{Z} \quad x_{2}=-f \frac{X+B}{Z}=x_{1}-f \frac{B}{Z}
$$

Basic Stereo Derivations

Define the disparity: $d=x_{1}-x_{2}$

$$
Z=\frac{f B}{d}
$$

