
RESEARCH CONTRIBUTIONS

Image Processing
and Computer
Vision

Parallel Thinning with Two-
Robert M. Haralick
Editor Subiteration Algorithms

ZICHENG GUO and RICHARD W. HALL

ABSTRACT: Two parallel thinning algorithms are
presented and evaluated in this article. The two algorithms
use two-subiteration approaches: (1) alternatively deleting
north and east and then south and west bounda y pixels and
(2) alternately applying a thinning operator to one of two
subfields. image connectivities are proven to be preserved
and the algorithms’ speed and medial curve thinness are
compared to other two-subiteration approaches and a fully
parallel approach. Both approaches produce very thin
medial curves and the second achieves the fastest overall
parallel thinning.

1. INTRODUCTION
Thinning is a fundamental preprocessing step in many
image processing and pattern recognition algorithms.
When the fundamental primitives in an image are
strokes or curves of varying thickness it is usually de-
sirable to reduce them to thin representations located
along the approximate middle of the original stroke or
curve. Such thinned representations are typically easier
to process in later stages producing savings in both
time and storage complexity. In some approaches the
thinned result is intended to contain sufficient informa-
tion to achieve recovery of the original image [l, 3, 11,
121, but investigators have frequently focused solely on
the reductive aspect of thinning since image recovery is
not always necessary. Early thinning approaches [8, 181
were designed for serial implementation, but there has
been a growing interest in parallel thinning algorithms
over the past two decades as parallel image processing
structures have become more available [13]. In these
structures local operators are most efficiently computed
if their supports are smaller and interest has focused on
supports defined over the 3 x 3 neighborhood of a
pixel. Fully parallel thinning algorithms which are re-
stricted to operators with 3 X 3 support have difficulty
preserving the connectivity of an image. (This is dis-
cussed in Section 2) Thus, investigators have partially
serialized their algorithms by breaking a given iteration
of their algorithms into several distinct iterations (re-
ferred to as subiterations) [Z, 10, 15-17, 19-211 or by

01989 ACMOOOl-07~2/s9/0300-0359 $1.50

March 1989 Volume 32 Number 3

partitioning the image space into distinct subfields
[6,13]. Either technique has the effect of defining dis-
tinct subiterations which tend to apply thinning opera-
tors to different parts of an image. Thus we refer to
both approaches as thinning algorithms with subitera-
tions. When using either technique with 3 X 3 local
operators the optimal choice for minimizing number of
subiterations will usually be two subiterations. The fo-
cus of this article is on two-subiteration approaches
which are restricted to operators with 3 X 3 support.
More recently, however, fully parallel thinners with
effective supports larger than 3 X 3 have been pre-
sented [4, 91 and will be addressed in Section 5.

Particularly fast two-subiteration approaches using
3 x 3 supports have been reported [lo, 211. Although
the parallel speed (e.g., required number of iterations)
of these algorithms was not reported, we have con-
firmed that both do outperform the original two-
subiteration approach [19]. Unfortunately, these ap-
proaches do not always preserve connectivity in images
and do not always produce thin results. Our goal is to
find fast two-subiteration algorithms restricted to 3 X 3
thinning operators which preserve connectivity in
images and produce thin results. In this article we
present two new approaches to parallel thinning: a two-
subiteration approach modified from [lo, 211 to pre-
serve connectivity in all images and produce thinner
results and a two-subiteration approach using subfields
which achieves for almost all of our test cases the fast-
est parallel thinning reported to date. We compare our
algorithms to other two-subiteration algorithms re-
ported [lo, 19, 211 by considering preservation of con-
nectivity, parallel speed, and thinness and size of re-
sults. In our evaluations we use artificial and natural
images including thick lines of various orientations,
Chinese characters and English letters. Finally we con-
sider two recently reported fully parallel thinners that
use a support larger than 3 x 3 [4, 91.

2. PARALLEL THINNING IN RECTANGULAR
TESSELLATIONS
We will define our thinning algorithms over binary val-
ued (0 or 1) images digitized in a rectangular tessella-
tion. We imagine that l-valued pixels (ones) form a set,

Communications of the ACM 359

Research CGwztributions

S, representing objects (connected components) to be
thinned; and O-valued pixels (zeros) form a set, 5 repre-
senting either t;le background of or holes in S. To avoid
connectivity paradoxes we define connectivities for S
and Swith eight-connectivity and four-connectivity, re-
spectively. Afte: thinning is complete the thinned ob-
jects should be 1 curve or a union of curves which we
will refer to as the medial curves. A set of pixels, G, is
cu.rve-like if most of the pixels of G have exactly two
eight-neighbors in G and a few pixels in G are end-
points (with one eight-neighbor in G) or branch points
(more than two eight-neighbors in G) [16].

Specific goals for any thinning algorithm have been
defined by Rose lfeld [15, 161. We paraphrase and ex-
tend these goals for parallel thinners:

Connectivity is preserved for both S and 6
Objects whic;l are already curves or unions of
curves shoulc. be unchanged.
Medial curve:; should
a. Lie along the approximate midpoints of elongated

objects
b. Be as thin as possible.
A parallel thi:lner should require as few iterations as
possible.

Goal 1 can be salisfied absolutely while goals 2 and 3
are satisfied to only varying degrees by various algo-
rithms. Goal 4 st,ltes the desire for a high parallel speed
as measured by the number of required iterations. For
our new algorithms we will show that goal 1 is satis-
fied, discuss qualitatively how well our medial curve
results satisfy goals 2 and 3a, and provide quantitative
measures to corn ?are the thinness of results (goal 3b)
and the parallel 5 peed (goal 4).

We will focus primarily on algorithms with thinning
operators which ‘Ise 3 x 3 supports which include a
pixel and its eight nearest neighbors. This is a natural
restriction since many parallel computer structures
imagine that an image is placed in a rectangular array
of processing elernents (PEs) with one pixel per PE and
with each PE linked to its nearest neighbors (e.g., see
[13]). But it is known that certain problems arise for
fully parallel thinning or shrinking algorithms which
use reduction only 3 X 3 operators [14-171. For exam-
ple, if we define z parallel thinr,ing algorithm with
identical thinning; results over 90” rotations of the ob-
ject we will typic,llly completely delete the 2 X 2
square object; thcs violating goal 1 [15]. Furthermore,
we k.now that a lc ng, three-width horizontal rectangle
with length O(n) can be thinned in O(1) iterations us-
ing, say, the four-:;ubiteration thinner of Rosenfeld [15].
But if we are thinning fully in parallel, in order to
avoid requiring 0:n) iterations we must delete the in-
ner north and south boundary ones of this long rectan-
gle. This same operator applied to a long, horizontal
rectangle of width two will always disconnect or com-
pletely delete this object. Thus, fully parallel thinning
algorithms that use reduction only 3 x 3 operators are
unable to meet our thinning goals.

To avoid these problems when using 3 x 3 supports
investigators have partially serialized their otherwise
parallel algorithms. Two classes of approaches have
3een used where one fully parallel iteration operating
over all pixels is:

‘1. Broken into i distinct iterations (subiterations) each
of which tends to apply a thinning operator to a
subset of the pixels in the image, usually using dis-
tinct boundary conditions at each subiteration [2, 10,
15-17,19-211 or

;!. Broken into i distinct iterations of the same parallel
operator applied over i distinct subfields of the im-
age [6, 131.

Subiterations with i = 2 [lo, 16, 19-211, i := 4 [15-17,
19, 201 and i = 8 [3] have been applied in rectangular
tessellations and subfields with i = 3 and 4 have been
utilized for hexagonal [6, 131 and rectangular tessella-
tions [13], respectively. The parallel speed of a parallel
algorithm is measured by the number of required itera-
t:ions which is simply the number of executed iterations
for a fully parallel algorithm, the number of executed
subiterations for a “subiterations” algorithm, or the
number of parallel applications of an oper,ator over a
subfield for a “subfields” algorithm. Thus, the number
of subiterations or subfields used directly iaffects the
number of total iterations required to thin the image. In
a parallel implementation [particularly where all com-
peting thinning operators are implementable in a simi-
1a.r amount of time) the number of required iterations is
a key measure of time complexity for the thinning algo-
rithms. If sufficient hardware is available to allow the
computation of any logical function over a given sup-
port, then parallel speed measures identify the ulti-
mately fastest algorithms achievable over the given
support. When thinning operators with 3 x 3 support
are used, making fully parallel algorithms out of the
question, then the optimally fast choice is for two-
subiteration approaches.

3. A TWO-SUBITERATION THINNING
A:LGORITHM
We have modified the two-subiteration algorithms pre-
sented in [21] and improved in [la] to preserve connec-
tivity properties and to produce thinner results. Our
algorithm uses operators with a 3 x 3 support as de-
fined in Figure 1. We refer to ~2, p4, p6, and pa as p’s
side neighbors and pl , ~3, ~5, and p7 as p’s diagonal
neighbors. We define several variables over this support
to be used in this algorithm. C(p) is defined as the
number of distinct eight-connected compon.ents of ones
in p’s eight-neighborhood. C(p) = 1 implies p is eight-
simple when p is a boundary pixel [17]. We define B(p)
as the number of ones in p’s eight-neighborhood. We
use symbols -, A and v to refer to logical complement,
AND and OR, respectively: and reserve + and . for
arithmetic addition and multiplication. We introduce a
new variable, N(p), which is useful for endpoint detec-
tion, but which can also help to achieve thinner results:

360 Communications of tht ACM March 1989 Volume .32 Number 3

Research Contributions

where

N(P) = MIN[NI(P), h(p)] (11

N(P) = (Pl ” Pz) + (P3 ” P4)

+ (Ps ” P6) + (P7 ” Pa)
(21

and

Nzlp) = (Pz ” p3) + (P4 ” p5)

+ (P6 ” P7) + (Pe ” Pd.
(3)

Nl(p) and Nz(p) each break the ordered set of p’s
neighboring pixels into four pairs of adjoining pixels
and count the number of pairs which contain 1 or 2
ones.

Algorithm 2 (Al)
A one of S, p, is deleted (one changed to zero) iff all of
the following conditions are satisfied:

a. C(p) = 1;
b. 2 5 N(p) 5 3; and
c. Apply one of the following:

1. (pz v p3 v Fj5) V p4 = 0 in odd iterations, or
2. (ps v p7 v pl) A p8 = 0 in even iterations.

Thinning stops when no further deletions occur.
Condition a is a necessary condition for preserving

local connectivity when p is deleted and avoids dele-
tion of pixels in the middle of medial curves. Our use
of C(p) allows some of the ones in the middle of two-
width diagonal lines to be deleted which in [lo, 211
were preserved. Figure 2(a) shows one such case. In
[lo, 211 deletion of a pixel, p, requires that there be
exactly one four-connected component of ones in p’s
eight-neighborhood. Using this rule in Figure 2(a), p
and b are each preserved; but p or b could be deleted to
obtain a thinner result. In odd iterations Algorithm 1
allows the deletion of p since C(p) = 1. Similarly, in
even iterations Algorithm 1 allows the deletion of b.

The new variable N(p) provides an endpoint check
replacing B(p) which is used in [lo, 211. When B(p) = 1,
p is an obvious endpoint and N(p) = 1. But when
B(p) = 2, p may or may not be an endpoint. In Fig-

North

Pl PZ P3

West ps P p4 East

P7 P6 PS

South

FIGURE 1. Neighborhood Definitions for Pixel p

b a d

C P e P

f 9

(a) (b)

FIGURE 2. Objects Illustrating the Rationale for Conditions Used
in Algorithm 1 (See Text)

ure 2(a) a count of neighboring ones will not discrimi-
nate between the redundant midpoint pixel p and the
endpoints a or c. But, N(a) = N(c) = 1 while N(p) = 2.
Thus, the redundant pixel p is deleted in odd iterations
of Al while endpoints a and c are preserved. In general
our definition of N(p) allows endpoints to be preserved
while deleting many redundant pixels in the middle
of curves.

Condition c(l), used for odd iterations, is satisfied
when p’s neighborhood takes either of the forms shown
in Figure 3, where x refers to a “don’t care” pixel
(either zero or one is acceptable). Condition C(Z) is satis-
fied for 180” rotations of either of the two conditions
shown in Figure 3. Thus, c(1) tends to identify pixels at
the north and east boundary of objects and C(Z) identi-
fies pixels at the south and west boundary of objects.
The condition in Figure 3b is more stringent than a
simple north boundary check in order to preserve con-
nectivity for objects like those shown in Figure 2. In an
odd iteration pixels p and g are deleted while pixels a
and d are preserved. Although pixels b and e are north
border pixels, they must be preserved to maintain con-
nectivity. The condition of Figure 3b enables preserva-
tion of both of these pixels.

Thinning of an object proceeds by successively re-
moving in distinct iterations north and east, and then
south and west boundary pixels. The connectivity
properties of the image are preserved. Objects of S are
neither disconnected nor are originally disjoint objects
connected and no object can be completely deleted.
The connectivity of 3 is similarly preserved. Proofs for
these assertions are given in Appendix A.

C(p) in condition a can be evaluated efficiently by
computing:

C,(p) = p2 A (p3 ” P4) + lj4 A (ps ” P6)
(4)

+ p6 * (p7 ” p6) + p6 A (pl ” PZ).

C,(p) takes on values over the range [0, 41 as it counts
the number of occurrences of a side zero with a one in
at least one of the two adjacent pixels in the clockwise
direction around p’s eight-neighborhood. It is shown in
Appendix A that C,(p) = C(p) for all neighborhoods of p
except cases where p has four side ones. In these cases

March 1989 Volume 32 Number 3 Communications of the ACM 361

Research Contributions

X X X X X X X X 0 0 0 0

X X P 0 P 0 X X P x P x

X X X X X X X X X X 1 1

(4 (4 (4 (4

FIGURE 3. Neighborhood Conditions Required for Deletion of p in
Odd Iterations of Algorithm 1 (Symbol x Represents a Pixel which

May Be Either 0 or 1)

N(p) = 4 making p not d&table by Al for these cases.
Thus, C,(p) may be used to compute condition a in Al.

4. A TWO-SUBITERATION THINNING
ALGORITHM USING SUBFIELDS
A partial serialization of a parallel thinning algorithm
can also be achieved by dividing the image into distinct
subsets referred to as subfields. These subfields are ac-
tivated sequentially in distinct iterations. This approach
was first applied to image processing by Golay [6]
and has been subsequently applied and extended by
Preston and others [13]. Preston [13, Chap. 61 reported
specific thinning results using three subfields for hexag-
onal tessellations and four subfields for rectangular tes-
sellations. Since E. smaller number of subfields will tend
to produce faster parallel thinning, we are considering
the two subfields case illustrated in Figure 4. We have
divided the image space into two subfields in a check-
erboard pattern. 5 ubfields are activated in the order 1,
2, 1, 2, . . . in successive iterations; and thus, only the
pixels in one subfield can change state in any iteration.
As a consequence only the four diagonal neighbors of
each pixel can ch#mge state simultaneously with that
pixel.

We have adapted the thinning algorithm of Rosenfeld
and Kak [IT] to this construct:

Algorithm 2 (A2)
A one of S, p is de .eted (one changed to zero) iff all of
the following conditions are met:

a. C(p) = 1;
b. p is a-connected to 5; and
c. B(p)> 1.

This deletion rule is applied in parallel to all pixels in a
given subfield for I given iteration, Subfields, as de-
scribed in Figure z,, are alternatively evoked. (C(p) and
B(p) are defined ic Section 3.) Thinning stops when no
further deletions cccur.

Condition a helps to preserve connectivity and avoids
deleti.on of pixels in the middle of medial curves. Con-
dition b guarantee:; that only boundary pixels are can-
didates for deletion and condition c preserves the

endpoints of medial curves. Thinning proceeds by suc-
cessively removing boundary pixels until the thinned
objects are sufficiently “curve-like” to fail conditions a
or c. C,(p) in equation (4) can be used to a3mpute con-
dition a since condition b guarantees that p is not delet-
able if p has four side ones in its eight-neighborhood.

This algorithm preserves the connectivity properties
of the image. Objects of S are neither disconnected nor
are originally disjoint objects connected and no object
c.an be completely deleted. The connectivity properties
for care also preserved. Proofs for these assertions are
given in Appendix B.

5. RESULTS AND DISCUSSION

Two-Subiteration Thinning Algorithms
Algorithms 1 (Al) and 2 (A2) are compared with other
two-subiteration algorithms: Zhang and Suen (ZS) [21];
Lii and Wang (LW) [lo], and Stefanelli and Rosenfeld
(SR) [19]. The relative algorithm performances are com-
pared in two ways:

1. We consider whether the requirements of goals 1, 2
and 3(a) (defined in Section 2) are satisfied.

2. We simulate parallel operation of the algorithms in
Fortran on a Vax 8600 system over several different
test sets and measure the following:
a. ml, defined as the number of iterations taken to

reach the medial curve;
b. mz, defined as the percentage of redundant pixels

left in the medial curve, i.e.,

number of redundant oixels
1

in the medial curve
mz =

total number of oixels
- . 100%

I

in the medial curve

where a redundant pixel is defined as a pixel in
the medial curve, which is not an endpoint, the
deletion of which does not disconnect the curve,
and the number of redundant pixels is defined as
the maximum number of redundant pixels that
can be removed simultaneously without discon-
necting the medial curve; and

1 2 1212...

2 12121...

121212...

212121...

.

FIGURE 4. Two Subfields Definition Used in AUgorithm 2

Communications of th! ACM March 1989 Volume 32 Number 3

Research Contributions

c. m3, defined as the size of the medial curve in
number of ones.

The first test set of patterns and corresponding me-
dial curves are given in Table I. (Pixels of the medial
curve are denoted by n and deleted pixels are denoted
with 0,) These are typically “difficult” patterns for thin-
ning algorithms and are useful for identifying defects in
connectivity and medial curve preservation. Two sets

of results are given for A2 corresponding to the two
cases obtained when either subfield is activated first.
Where a measure cannot be appropriately applied (e.g.,
mz for the 2 x 2 or 3 x 3 cases) an x is entered. We see
that our two new approaches, Al and A2, deal success-
fully with each pattern while none of the other algo-
rithms can do successful thinning on all of these pat-
terns. The least desirable result for A2 is the overly
large result it produces for one of the 3 x 3 cases.

TABLE I. Thinning Performance for Various Two-Subiteration Thinning Algorithms over “Difficult” Test Patterns

135O Line

45O Line

2 x 2 Square

n ’ l m a* . . wm ‘W

I’ l m n ’ . . rnM mm

n * 08 W’ l m mm n8
H’ l m l ’ . . mm mm

n * ‘D l * . . mm mm

m l
m . n .

112, = 1 ml = 1 rn, = 1 ml = 5 ml = 0 m, =2
m2 = 0 m2 = 0 m2 = 0 m2=x m2 = 45% mZ = 44%
m3 = 6 m3=5 m3 = 6 m3 = 1 m3= 11 mg = 9

ma l B n * . . mm n ’

l * *I rn’ .* mm U8

n * l a m* m* D8 II

8. l R B’ ‘rn NH IM

m- ‘I W* . . mm mm
n * l u m* . . mm l W

m, = 1 m, = 1 m, = 1 ml = 5 ??I, =o m, = 1
mp=O m2 = 0 m2 = 0 m2=x me = 42% mz = 40%
m3 = 7 m3 = 6 m3 = 6 m3 = 2 m3= 12 ma=10

. . l B n *

H* 8’ l m

ml = 1 ml = 1 ml = 1 m, = 1 mr = 1 m, = 2
mz=x mp=x mz = x m2 = x nz*=x m2=x
ma=1 m3 = 2 WI3 = 2 m3 = 0 m3 = 0 m3=0

. . . . n *m . . . l m’ . . .

‘a* l a l m* ‘m’ n 8* ..*

3 x 3 Square . . . l . . n ‘m .** . . . l . .

ml =2 m, =2 ml =I m, = 2 m, = 1 ml = 3

30° Line

I0 Line

m2 = x ma=x m2=x m2=r m2=x m2 = 31
m3 = 1 m3 = 1 n&j = 5 ms = 1 m3 = 3 m3 = 0

. l m 8.

n * n * l m I’ n * n *

8’ l m l * m* l * n *

n * n * ‘I n ’ n * *.

m* l m rn’ l

ml = 1 ml = 1 ml = 1 ml = 1 ml = 1 m, = 2
m,=O rn2 = 0 m,=O mz = 0 m2 = 0 m2 = 0
ms=4 m3 = 5 ma = 5 m3 = 3 ma=3 mg = 2

l
‘M*m’M m*m*w* l n nmm l l mmmm l l 8mm* *

n mmmrn l n *m*m* em*.*” l **e*e* ..*.*.

m, = I m, = 1 ml = 1 m, = 1 ml = 1 ml =2
m2 = 0 m2= 0 m2 = 0 m2 = 0 mp = 0 m2 = 0
m3 = 5 m3 = 6 m3 = 6 ms=4 ms=4 m3 5 3

March 1989 Volume 32 Number 3 Communications of the ACM 363

Research Contributions

ZS, LW. and SR each fail to preserve the 2 X 2 pattern.
ZS and LW fail I his test because for example they both
rernove, in the first iteration, south and east boundary
pixels and the nllrth-west corner. ZS fails to preserve
endpoints in certain diagonal lines and thus fails to
preserve these diagonal medial lines. LW preserves
endpoints by increasing the minimum number of one
neighbors required to delete a pixel from two to three;
but, this results in its failing to thin the two-width
diagonal test lines. SR also produces relatively thick
diagonal medial lines. Al and A2 both produce very
thin medial lines for diagonal, horizontal and vertical
two-width lines. A2 produces a “zigzag” medial line for
horizontal and vertical two-width lines (and other ori-
entations not shljwn).

It is clear from the results in Table I that ZS, LW, and
SR do not satisfy thinning goal 1 in that objects in S are
not always press rved. We have proven in Appendices A
and B that all connectivity properties are maintained
by Al and A2. Coals 2 and 3(a) appear to be reasonably
well met by Al, A2, LW, and SR. Only ZS fails badly,
on 45” and 135” diagonal patterns of even thickness.

Table II presents quantitative results for the five algo-
rithms over four sets of binary patterns:

1. Set 1 is a set of twelve 25 X 5 rectangular patterns at
orientations cf 0, 15, . . . , 165”.

2. Set 2 is identical to Set 1 except that patterns are of
size 40 X 8.

3. Set 3 contaim three English letters: A, B, and H.
4. Set 4 contaim six Chinese characters.

Figures 5, 6, and 7 present typical results for the five
algorithms for patterns drawn from these test sets.
(Larger dots represent medial curves and smaller dots
represent deleted pixels.) The number of iterations, ml,
the percentage OF redundant pixels, ml and the medial
curve size, m3, reported in Table II are the averages
over all members of each set. Considering algorithm
speed the data fc,r ml suggest a ranking from fastest to
slowest: A2, LW, ZS, SR, and Al. This ranking holds for

all but Set 1 where LW produces a lower ml value. The
cases where ZS fails to preserve diagonal lines have
especially large ml values which are not characteristic
of its overall performance and have been excluded
from Table II. Considering the thinness of medial
curves produced by each algorithm the data for mz sug-
gest a ranking from thinnest to least thin: A2, Al, ZS,
LW, and SR. A2 produces no redundant pixels in our
tests and Al produces almost no redundant pixels. ZS,
LW, and SR each produce substantially more redundant
pixels than either Al or A2. Considering the size of
medial curves obtained with each algorithm the data
for m3 suggest a ranking from smallest to the largest:
Al, ZS, A2, LW, and SR. A2 produces somewhat larger
medial curves than Al (see m3 in Table II) because A2
has, as a result of its subfields definition (Figure 4), a
tendency to preserve medial curve branches emanating
from corners of objects (see Figure 5). For example, if
the corner pixel c below,

c d 1

d 1 1

1 1 1

is not in the active subfield at the first iteration; then
the two d pixels are deleted [since they must be in the
active subfield) and on subsequent iterations c is pre-
served as an endpoint. Thus, A2 tends to produce a
medial curve which looks like a medial axis skeleton
[:16] for many examples, but also produces some un-
wanted spike branches [17], as on the left side of the
letter A in Figure 6. Al trades off speed w:ith LW and
SR to produce substantially thinner and srnaller medial
curves and to preserve all connectivity properties. It
also produces medial curves which are more visually
desirable than those produced by A2. A2 achieves the
best overall parallel speed and minimizes the number
of redundant pixels, but produces a somewhat larger
medial curve than Al.

Algorithm A2 achieves its speed advantage over LW
principally because of its superior performance on hori-

TABLE II. Thinning Performance for Various Two-Subiteration Thinning Algorithms over Four Pattern Sets

set1 ml 4.33 3.00 3.30’ 2.67 3.92
26 x 5 m 0 0 12 1%” 20.3% 24.5%
Rectangles 1113 18 21 ii* 24 23

set 2 ml 7.67 4.58 6.30‘ 5.17 6.75
40 x 6 m2 0 0 10.7%* 15.4% 25.7%
Rectangles m3 30 37 33” 40 39

sI?t 3 ml 8.00 4.67 5.00 5.00 6.33
English m2 0.85% 0 6.91% 6.75% 14.1%
Letters m3 78 83 82 84 88

!Si?t4 ml 9.67 5.67 6.83 6.83 7.67
Chinese m2 0.17% 0 6.21% 7.00% 14.5%
Characters

l 45’ and 135’ casts excluded

m3 286 306 304 312 332

364 Communications of ihe ACM March 1989 Volume 32 Number 3

Research Contributions

........

. _..._. . __..._ . __..__ ..,...

Al

ZS

. _..... _.._.. _.___..__._.............. ._..._ . :r:::::::::::::::::::::::
.I....

.
.

,.._..
.

_.....
.

. . .

. . .

A2

....

. _..... _....._..__ .

........................

LW

SR

FIGURE 5. Thinning Results for Algorithms Al, A2, ZS, LW, and SR for Lines of Various Orientations Drawn
from Test Sets 1 and 2

March 1989 Volume 32 Number 3 Communications of the ACM 365

Research Colrtributions

. ,,-.,
::;r::. __.___

:
,

.......

........

........
.......

.......

.......
......
.......
.......
.......
........
........

..........
..............
....... ..*
..............

,
.....

.......

........

........
.......
........
........
........

.......

Al A2

......*
::;::: .. ,

::::::,

..i

......

....... ,

zs

......

. . . .

...........i __.___
T;:;?:‘** ,,

.:
.

...i.. ..i....
::::::. _.. .

LW

...

......

.........

...........

............

............

.............

. ..*

........ ... (, ...

....... .. ,,

......

.......

......

......

......

.....

......

......

...... ,,

........................

........................

.........................

................

......

.....

::;:::.

........

.......

......

......

......

......

.......

........

........

..........

................

................

...............

SR

......

......

......

......
.m __a.___ ..;i ,,

FIGURE 6. Thinning Results for Algorithms Al, A2, ZS, LW, alnd SR for the English Letter A Drawn from Test SIet 3

366 Communications of t.le ACM March 1989 Volume? 32 Number 3

Research Contributions

zontal and verti :a1 rectangular objects. Since a two-
subiteration algorithm like LW cannot delete pixels
from north and south or east and west boundaries
within one subiieration [El, the best performance
achievable on an m x II pixels rectangle (m > n), ori-
ented horizontally or vertically, appears to be II - 1
iterations. (Inter .or pixels cannot be deleted, otherwise
holes may be created.) A fully parallel approach which
only deletes boundary ones (ones four-connected to g)
would require Lu/ZJ iterations. A2 approaches this fully
parallel perform lnce as n grows large since a non-
boundary pixel which is four-adjacent to a boundary
pixel can be deMed on the iteration following the dele-
tion of the boundary pixel. Figure 8 illustrates this
process by indiciiting the iteration in which each de-
leted pixel is rerloved. We note that in the second
iteration A2 delc tes all boundary pixels which are
not on the medill curve. This property applies to all
iterations after the first and A2 typically requires
5 Ln/2J + 1 itenltions (when 1z > 1) for these m x n
rectangles. Al, ZS, and LW each require four iterations
on such rectangles of width five and typically require
n - 1 iterations for these m X n rectangles. LW is faster
than A2 on diagonal rectangles (45” and 135”) but this
speed advantage is principally due to LW’s failure to
produce thin diagonal medial lines. A diagonally ori-

121; 12121212121
2*2: 232323232*2
12*+ ********x21

2*2: 232323232*2
1212 12121212121

FIGURE 8. Itemtions when A2 Deletes Pixels for a 5 x 15
Horizontal RectangL? (Iteration 1 Locations Indicate the Position of

Subfie d 1; Medial Curve Denoted by *)

ented boundary (45” or 135”) is composed of pixels all
within a single subfield and is entirely deletable by A2
in one iteration vrhen that subfield is active. In the
iteration after thc!se boundary pixels are deleted, the
new boundary pixels are in the opposite subfield which
is currently active and are in turn entirely deletable. As
a result successive iterations of A2 are able to delete all
of these diagonal boundary pixels until the region of
the ,medial curve is reached. Thus, the parallel speed of
A2 (like LW) on these diagonal boundaries comes close
to that achievable by a fully parallel approach. Finally,
results on the natural characters, Sets 3 and 4, indicate
that A2 tends to produce faster thinning for naturally
occurring distributions of line orientations.

A2 produces medial curves with a “zigzag” pattern
for certain object orientations and widths (e.g., horizon-
tal and vertical rcmctangles of even width). Although
visually disconce::ting these “zigzag” patterns are of

similar complexity to normal straight medial curves in
a chain code representation and require no more stor-
age. But, the “zigzag” patterns may represent a disad-
vantage if an interpixel distance of 2’/’ between two
d!iagonally adjacent pixels is used when estimating
curve length. Although this is an unusual result com-
pared to traditional thinning algorithms, t:his form of
medial line can provide, for example, the least biased
estimate of the position of the central axis of a long
two-width rectangle. Corner configurati0n.s for medial
curves of rectangular objects of 0” or 90” orientation
are symmetrical for rectangles with odd lengths and
widths, since this places all corners in the same sub-
field. For other cases where all corners are not in the
same subfield, corner configurations are not precisely
symmetrical. (See Figures 5 and 8 for examples.)

F’ully Parallel Thinning Algorithms
Two results [4, 91 which appeared after the submission
of our work are pertinent and we take the opportunity
to discuss these in our revision. Holt et al. [9] have
proposed a fully parallel thinner which uses an effec-
tive support of size 4 x 4. In order to fairly compare the
parallel speed of competing algorithms we should re-
strict supports for each in the same way. If we apply
the 3 X 3 support restriction to [9], this algorithm is
comparable to other two-subiteration algo:rithms and
has been shown to exhibit substantially lower parallel
speed than LW [7]. The later work of Chin et al. (CWSI)
also proposes a fully parallel thinner which uses 3 x 3
operators for reduction and 1 x 4 operators for restora-
tion; thus, the overall operator support is over a 4 x 4
region [4]. Again a comparison with algorithms using
o.perators restricted to 3 x 3 support is tenuous. If CWSI
is used with a 3 x 3 support restriction, then it can be
configured as a two-subiteration algorithm where each
fully parallel iteration over a 4 X 4 support requires
two iterations over a 3 x 3 support. We have evalu-
ated CWSI over our test sets and report the results in
Table III where iteration counts are for the fully paral-
lel 4 X 4 support. Figure 9 shows typical results for
CWSI for the test objects of Figures 5, 6, and 7. The
nlew fully parallel approach has higher iteration counts
than LW and A2 for all test sets. If we apply the 3 X 3
support restriction to CWSI, the iteration counts double
and CWSI compares even less favorably to LW and A2.
CWSI produces fewer redundant pixels (as measured by
mz) than LW, but considerably more than ‘41 or A2. For
example, CWSI fails to delete any pixels in. any two-
width 135” line of the following sort

11
11 .

11

But, CWSI does have on average rather small medial
curve sizes (m3) approaching those achieved by Al.
The principal reason for identifying fully parallel ap-

Communications of tire ACM March 1989 Volume 32 Number 3

Research Contributions

TABLE III. Thinning Performance for the Fully Parallel Thinner
CWSI [4]

Set 1
25 x 5
Rectangles

Set 2
40 x 6
Rectangles

Set 3
English
Letters

3.17 6.2% 20

5.50 6.8% 32

5.67 2.2% 77

Set 4
Chinese
Characters

proaches is to reduce number of required iterations, but
CWSI does not appear to achieve that objective when
compared to LW and A2. This unexpected result is
partly explained if we consider the 30” line case illus-
trated in Figure 10 where A2 outperforms CWSI. Here
pixels, p, with neighborhoods of the following form (or
90” rotations)

111

1 P 1
1 0 0

are not deletable by CWSI, but are deleted by A2 when
p is in the active subfield.

6. SUMMARY
Two parallel thinning algorithms have been presented
which use two subiterations. The first, Al, modifies the
algorithms of Zhang and Suen [21] and Lti and Wang
[lo] to preserve connectivity and produce thin medial
curves. The second, A2, uses two subfields with a mod-
ification of the classical thinning approach of Rosenfeld
and Kak [I?‘]. Both new algorithms preserve image
connectivities and produce thinner results than other
two-subiteration algorithms considered in our tests
[lo, 19, 211. Algorithm Al provides the smallest medial
curves with thinness comparable to Algorithm A2.
A2 produces the highest parallel speed among two-
subiteration thinners and its parallel speed is also
shown to be superior to a recently reported fully paral-
lel thinning approach [4].

Acknowledgment. The authors acknowledge the
thoughtful reviews of the referees which helped to im-
prove the clarity of this manuscript.

........

....

.
......i..

FIGURE 9. Thinning Results for CWSI for the Test Objects of
Figures 5,6, and 7

March 1989 Volume 32 Number 3 Communications of the ACM 369

Research Contributions

1 1 :t 121
1222 :L 21232

12 3 * *2 It 1232**1
12 * * 432 :L 12 * **21*

12**4321 212**2321
123*4321 1232*212

123**321 212***21
12**4321 232*2321

12**4321 123*X212
12**4321 212**321

1***3321 12*2X232
1222221 2*2*212
11111 12121

CWSI A2

FIGURE 10. Thinning Results on a 30° Line from Set 1 for CWSI and A:! (Numbers Give the Iteration when Pixels Are Deleted and the
Medial Curve Is Denoted with *; Iteration 1 Locations Indicate the Position of Subfield 1 for A2)

APPENDIX A

Algorithm 1 prr serves the connectivity properties of
any binary image as described in the following proposi-
tions. Conditiors a, b, c(l), and c(Z) refer to the re-
quired conditio:rs for deletion given for Algorithm 1.

Proposition Al. No object in S can be completely de-
leted by Algorithm 1 in any iteration.

Proof: We prove the proposition for odd iterations,
even iterations bllow similarly. Assume the contrary
hypothesis; thus, an object, Q, exists which is com-
pletely removec. in one iteration. Pixels in Q satisfy
either of the conditions shown in Figure 3, (a) or (b).
Figure 11 repea :s these conditions for the neighborhood
of a pixel x1 with specific names for its neighbors. As-
sume there is at least one pixel, x1, in Q satisfying (b) as
illustrated in Fi:mre 11(b). Pixel f # 1 since its neigh-
borhood does not satisfy (a) or (b). Since f = 0, then
c = d = e = 0 to obtain C(x,) = 1; but then N(xl) = 1 and
x1 cannot be deleted. Thus, all pixels in Q must satisfy
(a). Figure 11(a) illustrates the neighborhood of one
such pixel. Pixel d # 1 since its neighborhood does not
satisfy (a). Since d = 0, to achieve N(xl) > 1 while
preservingC(xl)=l,a=b=c=Oande=f=g=lor
a=b=c=lande=f=g=O.Ineithercasetwoones
(b and c or e ant f) will not satisfy (a) and will not be
del.eted. Thus, Q does not exist and the contrary hy-
pothesis is contradicted. 0

Since Algorithm 1 converts only ones to zeros and
only creates nevr zeros which are four-connected to
existing zeros, the following is obvious.

Corolla y A.2. Algorithm 1 does not connect any
originally disjoint objects of S, nor does it dlisconnect an
existing hole or create any new holes in S.

Proposition A.3. Algorithm 1 does not dkconnect any
object in S.

Proof: It is sufficient to show that for any eight-
connected path (x0, x1, . . . , x,) lying within a given
object, Q, of S, where only x1, x1, . . . , xn-, are deleted
at iteration i, there exists an alternate eight-connected
path, P, in Q which connects x0 and xn and is composed
of pixels which are not deleted at i [IS]. If we can show
this result for II = 2, it is straightforward to induce the
general result. Thus, we consider the three pixels x0, x1
and xZ and specifically the eight-neighborhood of x1
w’hich contains x0 and x2 (if Q contains less than three
ones, condition b will always preserve it). Pixel x1 is
deleted at i and we need to establish an alkrnate path,
P, to maintain connectivity between x0 and xZ for any
combination of x0, xZ positions. P must comain no pix-
els which can be deleted at i. We give the proof for odd
iterations. The proof for even iterations follows simi-
1a:rly. Condition c(1) provides two neighborhood condi-
tions where x1 could be deleted (Figure 11) and we
formulate our enumeration of all possible c,ases around
these two conditions. We need not consider cases
wlhere x0 and xZ are eight-adjacent already. Further, for
the case of Figure 11(a) a and g cannot be both ones
since otherwise we would have either N(x,) = 4 (if
b := d = f = 1) or C(x,) > 1 (if b, d or f = 0), violating
the assumption that x1 is deleted. Figure 12 illustrates

370 Communications of .he ACM March 1989 Volume 32 Number 3

Research Contributions

c c b a b a c c 0 0 0 0

d d Xl Xl 0 0 d d Xl Xl h h

e e f 9 f 9 e e f 1 f 1

(a) (a) (b) (b)

FIGURE 11. Neighborhood Conditions Required for Deletion of x,
in Odd Iterations of Al

the three resulting cases from which the enumerations
are taken. For the three cases (a), (b) and (c) there are
16, 16, and 10 possibilities to consider, respectively.
Figure 13 gives examples of each of the three cases. For
the 16 possibilities derived from Figure 12(a), the pixels
(b or d or both) eight-connecting x0 to x2 must be ones
so that C(X,) = 1. (For the example of Figure 13(a),
b = d = 1.) These b and d pixels are not deletable as
they each fail condition c(l) and thus compose the re-
quired alternate path P. The same form of argument
applies to each of the possibilities derived from Fig-
ure 12(b) and K!(C) except that the pixels d or f or both
are required to be ones and compose the path P. (e.g., in
the examples of Figure 13(b) and 13(c) d = f = 1 and d
and f are not deletable since they fail condition c(l)). 0

Lemma A.4. For any object, Q, with a hole, H, Algo-
rithm 1 will preserve after any iteration at least two
ones which are not eight-adjacent.

Proof: Our proof is given for odd iterations. The
proof for even iterations is similar. Referring to Fig-
ure 14 let p1 be the one to the immediate left of a left-
most zero, zl, in the hole H, and pz be the one to the
immediate right of a rightmost zero, z,. (zl and zr
could be the same zero.) By the definition of pl, neither
(a*, aa) nor (bz, bs) can contain all zeros. Similarly from
the definition of pz, neither {c2, c3J nor (dz, d3) can
contain all zeros. Now the claim is that after any odd
iteration: (1) at least one of the two elements 91 and p1
will be preserved, and (2) p2 will be preserved. To show
(l), first suppose 91 = 0. Then p1 is not deleted since
C(pl) # 1. Now assume 91 = 1. If 91 is not deletable, we
are done. If 91 is deletable, it must satisfy Figure 3(b)
and al = a2 = 0 and bz = 1. Since a2 = 0, a3 = 1 and
C(pl) # 1 and p1 is not deleted. To show (2) first assume
92 = 0. Then pz cannot be deleted since C(pz) # 1. Next
let 92 = 1 and assume pz is deletable. To satisfy Fig-
ure 3(b) cz = cl = 0 and dI = 1. But since c2 = 0 and
CB = 1, we have C(p2) # 1. This contradicts the assump-
tion that pz is deletable; therefore, pz is preserved. Fi-
nally, pz is not adjacent to p1 or 91 for any H. q

Proposition A.5 Algorithm 1 does not connect any
hole of S to another distinct hole or the background
of s.

Proof: Let H be any hole in S. Originally an object,
Q, surrounds H. Assume H becomes four-connected to
the background or another hole, via a path W of zeros,
for the first time at iteration i. Then for any two non-

C b a c b 0 c 0 0

d Xl 0 d Xl 0 d X1 h

e f 0 e f 9 e f 1

(a) (b) w

FIGURE 12. Classes of Neighborhoods of x, from which Enumerations are Formed in
the Proof of Proposition A.3

C b X0 C X0 0 X0 0 0

d Xl 0 d Xl 0 d Xl X2

e X2 0 e f X2 e f 1

(a) UN P-1

FIGURE 13. Example Neighborhoods from Each Class Shown in Figure 12

March 1989 Volume 32 Number 3 Communications of the ACM 371

Research Contributions

a1 a2 a3 c3 C2 Cl
41 PI 21 H Zr PZ q2

b, bz b, 4 dz d,

FIGURE 14. Conditions around a Hole, II, Used in the Proof of
Lemma A.4

adjacent pixels, x1 and x2, remaining in Q after itera-
tion i, there was an eight-connected path, R, connecting
x1 and x2 in Q at i - 1 which was disconnected by W at
iteration i. Lemma A.4 guarantees that Q contains at
least two ones alter i, which are not eight-adjacent;
thus x1 and x2 exist. But the proof of Proposition A.3
shows that for path R an alternate path, P, exists at i
connecting x1 ar.d x2 which is in the neighborhood of
pixels of R and thus belongs to Q. P would disconnect
the hypothetical path Wand thus W cannot exist and
holes are preserred.

Proposition A.C. C(p) = C,(p) (4) for all neighbor-
hoods of p except for the case when p has four side
mes; and in thk case C,(p) = 0 and C(p) = 1.

Proof: Both cperations are symmetrical with respect
to !30” rotations; thus, we need to show the result for

only one orientation. We enumerate the cases we need
ccnsider over the number of p’s side ones:

x 1 x x 1 x d 0 x

1 P 1 0 P 1 0 P ’

x 1 x x 1 x x 1 x

(4 04 (4

x 1 x a 0 x a 0 b

0 P cl 0 P 1 c P 0

x 1 x b 0 x c: 0 d

(dl (4 (fl

w:here x refers to a “don’t care” pixel (either a zero or
one) and pixels u, b, c, and d are referenced below.
When p has exactly four side ones, case (a).. C(p) = 1
and C,(p) = 0. When p has exactly three side ones,
case (b), C(p) = 1 is guaranteed and C,(p) =: 1. There are
z cases to consider when p has exactly two side ones,
cases (c) and (d). In case (c) C(p) = C,(p) = 1 when a = 0
and C(p) = C,(p) = 2 when a = 1. For case (d) C(p) =
C,(p) = 2. For case (e) C(p) = C,(p) = 1 + a + b and
similarly for case (f) C(p) = C,(p) = a + b t c + d. Cl

APPENDIX B

Algorithm 2 preserves the connectivity properties of Proof: We use the approach in the proof of Proposi-
any binary image as described in the following proposi- tion A.3. Thus, it is sufficient to consider an object, Q,
tions. Condition: a, b, and c refer to the three required with three or more ones and show that given any three
conditions for d4etion given for Algorithm 2. ones x0, x1, and x2 forming a path in Q whe:re x0 and x2

Proposition B.Z. No object in S can be completely
deleted by Algol*ithm 2 in any iteration.

Proof: Assume the contrary hypothesis. Thus, an ob-
ject, Q, exists w nich is deleted in one iteration and Q
must lie in only one subfield. Consider the neighbor-
hood of any pixtJ, p, in Q. This neighborhood will con-
tain from 0 to 4 mes in the subfield of p. Neighbor-
hoods with only 0 or 1 ones fail condition c. Neighbor-
hoods with 2, 3, or 4 ones cannot be eight-connected,
by the subfield definitions; and thus, C(p) > 1 failing
condition a. ThL.s, p cannot be deleted which contra-
clicts the contrary hypothesis. 0

are not eight-adjacent; deletion of x1 at any iteration i
will guarantee that an alternative path, P, exists which
co:nnects x0 to x1. Pixels of P must not be deletable
during iteration i. Refer to x1’s subfield as S, and the
other subfield as S2. Since pixels in S2 will not change
during i, it is sufficient to show that P exists and is
wholly in SZ for any possible positions of x0 and x2 in
the neighborhood of x1 with x0 not eight-adjacent to x2.
One such case is illustrated below

d xt b

c X2
Since Algorithm 2 converts only ones to zeros and

,nly creates nevr zeros which are four-connected to
:xisting zeros, (condition b) the following is obvious.

In this case x1 must satisfy condition a to be deletable
and this requires a = b = 1 or d = c = 1. In either case P
exists drawn from the set of pixels (a, b, c, a!] which

Corollary B.2. Algorithm 2 does not connect any belong wholly to SZ. All cases lead to a similar result
originally disjoint objects in S, nor does it disconnect an where P must exist to make C(x,) = 1 and is drawn
existing hole or :reate any new holes in S. from the set (a, b, c, d]. 0

Proposition B.3 Algorithm 2 does not disconnect any Proposition B.4. Algorithm 2 does not connect any
lbject in S. hole of S to another distinct hole or the background of S.

372 Communications of the ACM March 1989 Volume 32 Number 3

Research Contributions

Proof: Assume the contrary hypothesis holds and hood, are four-connected to x1 and partition the other
that two originally unconnected components of She- six neighbors into two four-connected sets as illustrated
come four-connected for the first time at iteration i via for one case below
path W. W contained a set of one or more ones, T,
which where deleted at i. Since no two members of a b c

either subfield are four-connected through pixels in
the same subfield, none of the members of T are four- x0 Xl x2
adjacent. Thus, in the path W any member of T, x1, is
surrounded by two pixels, x0 and x2, which were zero d e f

before i. (We assume that W is defined to include at
each end zeros belonging to the distinct components To be deleted x1 must satisfy conditions a and c, but
of g) For at least one member of T, x1, x0, and x2 were since x0 = x2 = 0 this can only occur if exactly one of
not four-connected before i, but are four-connected by the neighbor sets contains all zeros (e.g., a = b = c = o

x1 at i. Otherwise, the two distinct components of 5 or d = e = f = 0 in the example). All cases produce this
were already four-connected before i. We show in the form of result where for x1 to be deletable x0 and x2 are
following that this case cannot occur. Consider the already four-connected, contradicting the contrary
neighborhood of x1. x0 and xZ belong to this neighbor- hypothesis. cl

REFERENCES
1. Arcelli. C., and Di Baja, G.S. A width-independent fast thinning

algorithm. IEEE Trans. Patt. Anal. and Mach. Intell. PAMI-7,4 (July
1985), 463-474.

2. Arc&, C., Cordella, L., and Levialdi, S. Parallel thinning of binary
pictures. Electronics Letters II, 7 (Apr. 1975) 148-149.

3. Arcelli, C., Cordella. L.P., and Levialdi, S. From local maxima to
connected skeleton. IEEE Trans. P&t. Anal. and Mach. Infell. PAMI-3,
2 (Mar. 1981), 134-143.

4. Chin, R.T., Wan, H-K., Stover, D.L.. and Iverson, R.D. A one-pass
thinning algorithm and its parallel implementation. Camp. Vis.
Graphics Image Process 40 (19871, 30-40.

5. Goetcherian, V. From binary to grey tone image processing using
fuzzy logic concepts. Puff. Recognition 12 (1980), 7-15.

6. Golay, M.J.E. Hexagonal parallel pattern transformations. IEEE Trans.
on Computers C-18,8 (Aug. 1969) 733-740.

7. Hall, R.W. Fast parallel thinning algorithms: Parallel speed and con-
nectivity preservation. Commun. ACM 32, 1 (Jan. 1989), 124-131.

8. Hilditch, C.J. Linear skeletons from square cupboards. In Machine
Intelligence 4, B. Meltzer and D. Michie, Eds. American Elsevier,
New York, 1969,403-420.

9. Holt, CM., Stewart, A., Clint, M., and Perrott, R.H. An improved
parallel thinning algorithm. Commun. ACM 30, 2 (Feb. 19871,
156-160.

10. Lii, H.E., and Wang, P.S.P. A comment on A fast parallel algorithm
for thinning digital patterns. Commun. ACM 29, 3 (Mar. 1986),
239-242.

11. Pavlidis, T. A flexible parallel thinning algorithm. In Proceedings of
the Conference on Pattern Recognition and Image Processing (Dallas,
Texas, Aug. 3-5, 1981), IEEE, New York, 1981, pp. 162-167.

12. Pavlidis, T. Algorithms for Graphics and Image Processing, Springar-
Verlag, Berlin, 1982.

13. Preston, K., and Duff, M.J.B. Modern Cellular Automata. Plenum, New
York, 1984.

14. Rosenfeld, A. Connectivity in digital pictures. JACM 17, 1 (Jan. 1970),
146-160.

15. Rosenfeld, A. A characterization of parallel thinning algorithms.
Information and Control 29 (1975), 286-291.

16. Rosenfeld, A., and Kak, A. Digital Picture Processing. Academic Press,
New York, 1976.

17. Rosenfeld, A., and Kak, A. Digital Picture Processing Vol. 2. Academic
Press, New York, 1982.

18. Rutovitz, D. Pattern recognition. J, Royal Statist. Sot. 129, (1966),
504-530.

19. Stefanelli, R., and Rosenfeld, A. Some parallel thinning algorithms
for digital pictures. JACM 18, 2 (Apr. 1971), 255-264.

20. Tamura, H. A comparison of line thinning algorithms from digital
geometry viewpoint. In Proceedings of the International Conference on
Pattern Recognition (Kyoto, Japan, Nov. 7-10, 1978). IEEE, New York,
1979, pp. 715-719.

21. Zhang, T.Y., and Suen, C.Y. A fast thinning algorithm for thinning
digital patterns. Commun. ACM 27, 3 (Mar. 1984), 236-239.

CR Categories and Subject Descriptors: I.4 [Image Processing]: 1.5.~
[Pattern Recognition]: Design Methodology-puffers analysis: 1.5.4 [Pat-
tern Recognition]: Applications-computer vision

General Terms: Algorithms, Performance, Theory
Additional Key Words and Phrases: Parallel algorithms, preservation

of connectivity, thinning binary patterns

ABOUT THE AUTHORS:

ZICHENG GUO is a research assistant working toward his
Ph.D. in the Department of Electrical Engineering at the Uni-
versity of Pittsburgh. His current research interests are in par-
allel algorithms and architectures, and their applications in
image processing and pattern recognition. Author’s Present
Address: Department of Electrical Engineering, 348 Benedum
Engineering Hall, University of Pittsburgh, Pittsburgh, PA
15261.

RICHARD W. HALL is an associate professor of electrical engi-
neering at the University of Pittsburgh. His current research
interests are in studies of parallel algorithms and architectures
for visual information processing. Author’s Present Address:
Department of Electrical Engineering, 348 Benedum Engineer-
ing Hall, University of Pittsburgh, Pittsburgh, PA 15261.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

March 1989 Volume 32 Number 3 Communications of the ACM 373

