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ABSTRACT: Two parallel thinning algorithms are 
presented and evaluated in this article. The two algorithms 
use two-subiteration approaches: (1) alternatively deleting 
north and east and then south and west bounda y pixels and 
(2) alternately applying a thinning operator to one of two 
subfields. image connectivities are proven to be preserved 
and the algorithms’ speed and medial curve thinness are 
compared to other two-subiteration approaches and a fully 
parallel approach. Both approaches produce very thin 
medial curves and the second achieves the fastest overall 
parallel thinning. 

1. INTRODUCTION 
Thinning is a fundamental preprocessing step in many 
image processing and pattern recognition algorithms. 
When the fundamental primitives in an image are 
strokes or curves of varying thickness it is usually de- 
sirable to reduce them to thin representations located 
along the approximate middle of the original stroke or 
curve. Such thinned representations are typically easier 
to process in later stages producing savings in both 
time and storage complexity. In some approaches the 
thinned result is intended to contain sufficient informa- 
tion to achieve recovery of the original image [l, 3, 11, 
121, but investigators have frequently focused solely on 
the reductive aspect of thinning since image recovery is 
not always necessary. Early thinning approaches [8, 181 
were designed for serial implementation, but there has 
been a growing interest in parallel thinning algorithms 
over the past two decades as parallel image processing 
structures have become more available [13]. In these 
structures local operators are most efficiently computed 
if their supports are smaller and interest has focused on 
supports defined over the 3 x 3 neighborhood of a 
pixel. Fully parallel thinning algorithms which are re- 
stricted to operators with 3 X 3 support have difficulty 
preserving the connectivity of an image. (This is dis- 
cussed in Section 2) Thus, investigators have partially 
serialized their algorithms by breaking a given iteration 
of their algorithms into several distinct iterations (re- 
ferred to as subiterations) [Z, 10, 15-17, 19-211 or by 
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partitioning the image space into distinct subfields 
[6,13]. Either technique has the effect of defining dis- 
tinct subiterations which tend to apply thinning opera- 
tors to different parts of an image. Thus we refer to 
both approaches as thinning algorithms with subitera- 
tions. When using either technique with 3 X 3 local 
operators the optimal choice for minimizing number of 
subiterations will usually be two subiterations. The fo- 
cus of this article is on two-subiteration approaches 
which are restricted to operators with 3 X 3 support. 
More recently, however, fully parallel thinners with 
effective supports larger than 3 X 3 have been pre- 
sented [4, 91 and will be addressed in Section 5. 

Particularly fast two-subiteration approaches using 
3 x 3 supports have been reported [lo, 211. Although 
the parallel speed (e.g., required number of iterations) 
of these algorithms was not reported, we have con- 
firmed that both do outperform the original two- 
subiteration approach [19]. Unfortunately, these ap- 
proaches do not always preserve connectivity in images 
and do not always produce thin results. Our goal is to 
find fast two-subiteration algorithms restricted to 3 X 3 
thinning operators which preserve connectivity in 
images and produce thin results. In this article we 
present two new approaches to parallel thinning: a two- 
subiteration approach modified from [lo, 211 to pre- 
serve connectivity in all images and produce thinner 
results and a two-subiteration approach using subfields 
which achieves for almost all of our test cases the fast- 
est parallel thinning reported to date. We compare our 
algorithms to other two-subiteration algorithms re- 
ported [lo, 19, 211 by considering preservation of con- 
nectivity, parallel speed, and thinness and size of re- 
sults. In our evaluations we use artificial and natural 
images including thick lines of various orientations, 
Chinese characters and English letters. Finally we con- 
sider two recently reported fully parallel thinners that 
use a support larger than 3 x 3 [4, 91. 

2. PARALLEL THINNING IN RECTANGULAR 
TESSELLATIONS 
We will define our thinning algorithms over binary val- 
ued (0 or 1) images digitized in a rectangular tessella- 
tion. We imagine that l-valued pixels (ones) form a set, 
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S, representing objects (connected components) to be 
thinned; and O-valued pixels (zeros) form a set, 5 repre- 
senting either t;le background of or holes in S. To avoid 
connectivity paradoxes we define connectivities for S 
and Swith eight-connectivity and four-connectivity, re- 
spectively. Afte: thinning is complete the thinned ob- 
jects should be 1 curve or a union of curves which we 
will refer to as the medial curves. A set of pixels, G, is 
cu.rve-like if most of the pixels of G have exactly two 
eight-neighbors in G and a few pixels in G are end- 
points (with one eight-neighbor in G) or branch points 
(more than two eight-neighbors in G) [16]. 

Specific goals for any thinning algorithm have been 
defined by Rose lfeld [15, 161. We paraphrase and ex- 
tend these goals for parallel thinners: 

Connectivity is preserved for both S and 6 
Objects whic;l are already curves or unions of 
curves shoulc. be unchanged. 
Medial curve:; should 
a. Lie along the approximate midpoints of elongated 

objects 
b. Be as thin as possible. 
A parallel thi:lner should require as few iterations as 
possible. 

Goal 1 can be salisfied absolutely while goals 2 and 3 
are satisfied to only varying degrees by various algo- 
rithms. Goal 4 st,ltes the desire for a high parallel speed 
as measured by the number of required iterations. For 
our new algorithms we will show that goal 1 is satis- 
fied, discuss qualitatively how well our medial curve 
results satisfy goals 2 and 3a, and provide quantitative 
measures to corn ?are the thinness of results (goal 3b) 
and the parallel 5 peed (goal 4). 

We will focus primarily on algorithms with thinning 
operators which ‘Ise 3 x 3 supports which include a 
pixel and its eight nearest neighbors. This is a natural 
restriction since many parallel computer structures 
imagine that an image is placed in a rectangular array 
of processing elernents (PEs) with one pixel per PE and 
with each PE linked to its nearest neighbors (e.g., see 
[13]). But it is known that certain problems arise for 
fully parallel thinning or shrinking algorithms which 
use reduction only 3 X 3 operators [14-171. For exam- 
ple, if we define z parallel thinr,ing algorithm with 
identical thinning; results over 90” rotations of the ob- 
ject we will typic,llly completely delete the 2 X 2 
square object; thcs violating goal 1 [15]. Furthermore, 
we k.now that a lc ng, three-width horizontal rectangle 
with length O(n) can be thinned in O(1) iterations us- 
ing, say, the four-:;ubiteration thinner of Rosenfeld [15]. 
But if we are thinning fully in parallel, in order to 
avoid requiring 0:n) iterations we must delete the in- 
ner north and south boundary ones of this long rectan- 
gle. This same operator applied to a long, horizontal 
rectangle of width two will always disconnect or com- 
pletely delete this object. Thus, fully parallel thinning 
algorithms that use reduction only 3 x 3 operators are 
unable to meet our thinning goals. 

To avoid these problems when using 3 x 3 supports 
investigators have partially serialized their otherwise 
parallel algorithms. Two classes of approaches have 
3een used where one fully parallel iteration operating 
over all pixels is: 

‘1. Broken into i distinct iterations (subiterations) each 
of which tends to apply a thinning operator to a 
subset of the pixels in the image, usually using dis- 
tinct boundary conditions at each subiteration [2, 10, 
15-17,19-211 or 

;!. Broken into i distinct iterations of the same parallel 
operator applied over i distinct subfields of the im- 
age [6, 131. 

Subiterations with i = 2 [lo, 16, 19-211, i := 4 [15-17, 
19, 201 and i = 8 [3] have been applied in rectangular 
tessellations and subfields with i = 3 and 4 have been 
utilized for hexagonal [6, 131 and rectangular tessella- 
tions [13], respectively. The parallel speed of a parallel 
algorithm is measured by the number of required itera- 
t:ions which is simply the number of executed iterations 
for a fully parallel algorithm, the number of executed 
subiterations for a “subiterations” algorithm, or the 
number of parallel applications of an oper,ator over a 
subfield for a “subfields” algorithm. Thus, the number 
of subiterations or subfields used directly iaffects the 
number of total iterations required to thin the image. In 
a parallel implementation [particularly where all com- 
peting thinning operators are implementable in a simi- 
1a.r amount of time) the number of required iterations is 
a key measure of time complexity for the thinning algo- 
rithms. If sufficient hardware is available to allow the 
computation of any logical function over a given sup- 
port, then parallel speed measures identify the ulti- 
mately fastest algorithms achievable over the given 
support. When thinning operators with 3 x 3 support 
are used, making fully parallel algorithms out of the 
question, then the optimally fast choice is for two- 
subiteration approaches. 

3. A TWO-SUBITERATION THINNING 
A:LGORITHM 
We have modified the two-subiteration algorithms pre- 
sented in [21] and improved in [la] to preserve connec- 
tivity properties and to produce thinner results. Our 
algorithm uses operators with a 3 x 3 support as de- 
fined in Figure 1. We refer to ~2, p4, p6, and pa as p’s 
side neighbors and pl , ~3, ~5, and p7 as p’s diagonal 
neighbors. We define several variables over this support 
to be used in this algorithm. C(p) is defined as the 
number of distinct eight-connected compon.ents of ones 
in p’s eight-neighborhood. C(p) = 1 implies p is eight- 
simple when p is a boundary pixel [17]. We define B(p) 
as the number of ones in p’s eight-neighborhood. We 
use symbols -, A and v to refer to logical complement, 
AND and OR, respectively: and reserve + and . for 
arithmetic addition and multiplication. We introduce a 
new variable, N(p), which is useful for endpoint detec- 
tion, but which can also help to achieve thinner results: 
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where 

N(P) = MIN[NI(P), h(p)] (11 

N(P) = (Pl ” Pz) + (P3 ” P4) 

+ (Ps ” P6) + (P7 ” Pa) 
(21 

and 

Nzlp) = (Pz ” p3) + (P4 ” p5) 

+ (P6 ” P7) + (Pe ” Pd. 
(3) 

Nl(p) and Nz(p) each break the ordered set of p’s 
neighboring pixels into four pairs of adjoining pixels 
and count the number of pairs which contain 1 or 2 
ones. 

Algorithm 2 (Al) 
A one of S, p, is deleted (one changed to zero) iff all of 
the following conditions are satisfied: 

a. C(p) = 1; 
b. 2 5 N(p) 5 3; and 
c. Apply one of the following: 

1. (pz v p3 v Fj5) V p4 = 0 in odd iterations, or 
2. (ps v p7 v pl) A p8 = 0 in even iterations. 

Thinning stops when no further deletions occur. 
Condition a is a necessary condition for preserving 

local connectivity when p is deleted and avoids dele- 
tion of pixels in the middle of medial curves. Our use 
of C(p) allows some of the ones in the middle of two- 
width diagonal lines to be deleted which in [lo, 211 
were preserved. Figure 2(a) shows one such case. In 
[lo, 211 deletion of a pixel, p, requires that there be 
exactly one four-connected component of ones in p’s 
eight-neighborhood. Using this rule in Figure 2(a), p 
and b are each preserved; but p or b could be deleted to 
obtain a thinner result. In odd iterations Algorithm 1 
allows the deletion of p since C(p) = 1. Similarly, in 
even iterations Algorithm 1 allows the deletion of b. 

The new variable N(p) provides an endpoint check 
replacing B(p) which is used in [lo, 211. When B(p) = 1, 
p is an obvious endpoint and N(p) = 1. But when 
B(p) = 2, p may or may not be an endpoint. In Fig- 
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FIGURE 1. Neighborhood Definitions for Pixel p 
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FIGURE 2. Objects Illustrating the Rationale for Conditions Used 
in Algorithm 1 (See Text) 

ure 2(a) a count of neighboring ones will not discrimi- 
nate between the redundant midpoint pixel p and the 
endpoints a or c. But, N(a) = N(c) = 1 while N(p) = 2. 
Thus, the redundant pixel p is deleted in odd iterations 
of Al while endpoints a and c are preserved. In general 
our definition of N(p) allows endpoints to be preserved 
while deleting many redundant pixels in the middle 
of curves. 

Condition c(l), used for odd iterations, is satisfied 
when p’s neighborhood takes either of the forms shown 
in Figure 3, where x refers to a “don’t care” pixel 
(either zero or one is acceptable). Condition C(Z) is satis- 
fied for 180” rotations of either of the two conditions 
shown in Figure 3. Thus, c(1) tends to identify pixels at 
the north and east boundary of objects and C(Z) identi- 
fies pixels at the south and west boundary of objects. 
The condition in Figure 3b is more stringent than a 
simple north boundary check in order to preserve con- 
nectivity for objects like those shown in Figure 2. In an 
odd iteration pixels p and g are deleted while pixels a 
and d are preserved. Although pixels b and e are north 
border pixels, they must be preserved to maintain con- 
nectivity. The condition of Figure 3b enables preserva- 
tion of both of these pixels. 

Thinning of an object proceeds by successively re- 
moving in distinct iterations north and east, and then 
south and west boundary pixels. The connectivity 
properties of the image are preserved. Objects of S are 
neither disconnected nor are originally disjoint objects 
connected and no object can be completely deleted. 
The connectivity of 3 is similarly preserved. Proofs for 
these assertions are given in Appendix A. 

C(p) in condition a can be evaluated efficiently by 
computing: 

C,(p) = p2 A (p3 ” P4) + lj4 A (ps ” P6) 
(4) 

+ p6 * (p7 ” p6) + p6 A (pl ” PZ). 

C,(p) takes on values over the range [0, 41 as it counts 
the number of occurrences of a side zero with a one in 
at least one of the two adjacent pixels in the clockwise 
direction around p’s eight-neighborhood. It is shown in 
Appendix A that C,(p) = C(p) for all neighborhoods of p 
except cases where p has four side ones. In these cases 
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FIGURE 3. Neighborhood Conditions Required for Deletion of p in 
Odd Iterations of Algorithm 1 (Symbol x Represents a Pixel which 

May Be Either 0 or 1) 

N(p) = 4 making p not d&table by Al for these cases. 
Thus, C,(p) may be used to compute condition a in Al. 

4. A TWO-SUBITERATION THINNING 
ALGORITHM USING SUBFIELDS 
A partial serialization of a parallel thinning algorithm 
can also be achieved by dividing the image into distinct 
subsets referred to as subfields. These subfields are ac- 
tivated sequentially in distinct iterations. This approach 
was first applied to image processing by Golay [6] 
and has been subsequently applied and extended by 
Preston and others [13]. Preston [13, Chap. 61 reported 
specific thinning results using three subfields for hexag- 
onal tessellations and four subfields for rectangular tes- 
sellations. Since E. smaller number of subfields will tend 
to produce faster parallel thinning, we are considering 
the two subfields case illustrated in Figure 4. We have 
divided the image space into two subfields in a check- 
erboard pattern. 5 ubfields are activated in the order 1, 
2, 1, 2, . . . in successive iterations; and thus, only the 
pixels in one subfield can change state in any iteration. 
As a consequence only the four diagonal neighbors of 
each pixel can ch#mge state simultaneously with that 
pixel. 

We have adapted the thinning algorithm of Rosenfeld 
and Kak [IT] to this construct: 

Algorithm 2 (A2) 
A one of S, p is de .eted (one changed to zero) iff all of 
the following conditions are met: 

a. C(p) = 1; 
b. p is a-connected to 5; and 
c. B(p)> 1. 

This deletion rule is applied in parallel to all pixels in a 
given subfield for I given iteration, Subfields, as de- 
scribed in Figure z,, are alternatively evoked. (C(p) and 
B(p) are defined ic Section 3.) Thinning stops when no 
further deletions cccur. 

Condition a helps to preserve connectivity and avoids 
deleti.on of pixels in the middle of medial curves. Con- 
dition b guarantee:; that only boundary pixels are can- 
didates for deletion and condition c preserves the 

endpoints of medial curves. Thinning proceeds by suc- 
cessively removing boundary pixels until the thinned 
objects are sufficiently “curve-like” to fail conditions a 
or c. C,(p) in equation (4) can be used to a3mpute con- 
dition a since condition b guarantees that p is not delet- 
able if p has four side ones in its eight-neighborhood. 

This algorithm preserves the connectivity properties 
of the image. Objects of S are neither disconnected nor 
are originally disjoint objects connected and no object 
c.an be completely deleted. The connectivity properties 
for care also preserved. Proofs for these assertions are 
given in Appendix B. 

5. RESULTS AND DISCUSSION 

Two-Subiteration Thinning Algorithms 
Algorithms 1 (Al) and 2 (A2) are compared with other 
two-subiteration algorithms: Zhang and Suen (ZS) [21]; 
Lii and Wang (LW) [lo], and Stefanelli and Rosenfeld 
(SR) [19]. The relative algorithm performances are com- 
pared in two ways: 

1. We consider whether the requirements of goals 1, 2 
and 3(a) (defined in Section 2) are satisfied. 

2. We simulate parallel operation of the algorithms in 
Fortran on a Vax 8600 system over several different 
test sets and measure the following: 
a. ml, defined as the number of iterations taken to 

reach the medial curve; 
b. mz, defined as the percentage of redundant pixels 

left in the medial curve, i.e., 

number of redundant oixels 
1 

in the medial curve 
mz = 

total number of oixels 
- . 100% 

I 

in the medial curve 

where a redundant pixel is defined as a pixel in 
the medial curve, which is not an endpoint, the 
deletion of which does not disconnect the curve, 
and the number of redundant pixels is defined as 
the maximum number of redundant pixels that 
can be removed simultaneously without discon- 
necting the medial curve; and 

1 2 1212... 

2 12121... 

121212... 

212121... 

. . . . . . 

FIGURE 4. Two Subfields Definition Used in AUgorithm 2 
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c. m3, defined as the size of the medial curve in 
number of ones. 

The first test set of patterns and corresponding me- 
dial curves are given in Table I. (Pixels of the medial 
curve are denoted by n and deleted pixels are denoted 
with 0,) These are typically “difficult” patterns for thin- 
ning algorithms and are useful for identifying defects in 
connectivity and medial curve preservation. Two sets 

of results are given for A2 corresponding to the two 
cases obtained when either subfield is activated first. 
Where a measure cannot be appropriately applied (e.g., 
mz for the 2 x 2 or 3 x 3 cases) an x is entered. We see 
that our two new approaches, Al and A2, deal success- 
fully with each pattern while none of the other algo- 
rithms can do successful thinning on all of these pat- 
terns. The least desirable result for A2 is the overly 
large result it produces for one of the 3 x 3 cases. 

TABLE I. Thinning Performance for Various Two-Subiteration Thinning Algorithms over “Difficult” Test Patterns 

135O Line 

45O Line 

2 x 2 Square 

n ’ l m a* . . wm ‘W 

I’ l m n ’ . . rnM mm 

n * 08 W’ l m mm n8 
H’ l m l ’ . . mm mm 

n * ‘D l * . . mm mm 

m l 
m . n . 

112, = 1 ml = 1 rn, = 1 ml = 5 ml = 0 m, =2 
m2 = 0 m2 = 0 m2 = 0 m2=x m2 = 45% mZ = 44% 
m3 = 6 m3=5 m3 = 6 m3 = 1 m3= 11 mg = 9 

ma l B n * . . mm n ’ 

l * *I rn’ .* mm U8 

n * l a m* m* D8 II 

8. l R B’ ‘rn NH IM 

m- ‘I W* . . mm mm 
n * l u m* . . mm l W 

m, = 1 m, = 1 m, = 1 ml = 5 ??I, =o m, = 1 
mp=O m2 = 0 m2 = 0 m2=x me = 42% mz = 40% 
m3 = 7 m3 = 6 m3 = 6 m3 = 2 m3= 12 ma=10 

. . l B n * . . . . . . 

H* 8’ l m . . . . . . 

ml = 1 ml = 1 ml = 1 m, = 1 mr = 1 m, = 2 
mz=x mp=x mz = x m2 = x nz*=x m2=x 
ma=1 m3 = 2 WI3 = 2 m3 = 0 m3 = 0 m3=0 

*.* . . . n *m . . . l m’ . . . 

‘a* l a l m* ‘m’ n 8* ..* 

3 x 3 Square . . . l . . n ‘m .** . . . l . . 

ml =2 m, =2 ml =I m, = 2 m, = 1 ml = 3 

30° Line 

I0 Line 

m2 = x ma=x m2=x m2=r m2=x m2 = 31 
m3 = 1 m3 = 1 n&j = 5 ms = 1 m3 = 3 m3 = 0 

*. l m 8. . . . . .* 

n * n * l m I’ n * n * 

8’ l m l * m* l * n * 

n * n * ‘I n ’ n * *. 

m* l m rn’ l . . . . . 

ml = 1 ml = 1 ml = 1 ml = 1 ml = 1 m, = 2 
m,=O rn2 = 0 m,=O mz = 0 m2 = 0 m2 = 0 
ms=4 m3 = 5 ma = 5 m3 = 3 ma=3 mg = 2 

l . . . . . 
‘M*m’M m*m*w* l n nmm l l mmmm l l 8mm* * 

n mmmrn l n *m*m* em*.*” l **e*e . . ...* ..*.*. 

m, = I m, = 1 ml = 1 m, = 1 ml = 1 ml =2 
m2 = 0 m2= 0 m2 = 0 m2 = 0 mp = 0 m2 = 0 
m3 = 5 m3 = 6 m3 = 6 ms=4 ms=4 m3 5 3 
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ZS, LW. and SR each fail to preserve the 2 X 2 pattern. 
ZS and LW fail I his test because for example they both 
rernove, in the first iteration, south and east boundary 
pixels and the nllrth-west corner. ZS fails to preserve 
endpoints in certain diagonal lines and thus fails to 
preserve these diagonal medial lines. LW preserves 
endpoints by increasing the minimum number of one 
neighbors required to delete a pixel from two to three; 
but, this results in its failing to thin the two-width 
diagonal test lines. SR also produces relatively thick 
diagonal medial lines. Al and A2 both produce very 
thin medial lines for diagonal, horizontal and vertical 
two-width lines. A2 produces a “zigzag” medial line for 
horizontal and vertical two-width lines (and other ori- 
entations not shljwn). 

It is clear from the results in Table I that ZS, LW, and 
SR do not satisfy thinning goal 1 in that objects in S are 
not always press rved. We have proven in Appendices A 
and B that all connectivity properties are maintained 
by Al and A2. Coals 2 and 3(a) appear to be reasonably 
well met by Al, A2, LW, and SR. Only ZS fails badly, 
on 45” and 135” diagonal patterns of even thickness. 

Table II presents quantitative results for the five algo- 
rithms over four sets of binary patterns: 

1. Set 1 is a set of twelve 25 X 5 rectangular patterns at 
orientations cf 0, 15, . . . , 165”. 

2. Set 2 is identical to Set 1 except that patterns are of 
size 40 X 8. 

3. Set 3 contaim three English letters: A, B, and H. 
4. Set 4 contaim six Chinese characters. 

Figures 5, 6, and 7 present typical results for the five 
algorithms for patterns drawn from these test sets. 
(Larger dots represent medial curves and smaller dots 
represent deleted pixels.) The number of iterations, ml, 
the percentage OF redundant pixels, ml and the medial 
curve size, m3, reported in Table II are the averages 
over all members of each set. Considering algorithm 
speed the data fc,r ml suggest a ranking from fastest to 
slowest: A2, LW, ZS, SR, and Al. This ranking holds for 

all but Set 1 where LW produces a lower ml value. The 
cases where ZS fails to preserve diagonal lines have 
especially large ml values which are not characteristic 
of its overall performance and have been excluded 
from Table II. Considering the thinness of medial 
curves produced by each algorithm the data for mz sug- 
gest a ranking from thinnest to least thin: A2, Al, ZS, 
LW, and SR. A2 produces no redundant pixels in our 
tests and Al produces almost no redundant pixels. ZS, 
LW, and SR each produce substantially more redundant 
pixels than either Al or A2. Considering the size of 
medial curves obtained with each algorithm the data 
for m3 suggest a ranking from smallest to the largest: 
Al, ZS, A2, LW, and SR. A2 produces somewhat larger 
medial curves than Al (see m3 in Table II) because A2 
has, as a result of its subfields definition (Figure 4), a 
tendency to preserve medial curve branches emanating 
from corners of objects (see Figure 5). For example, if 
the corner pixel c below, 

c d 1 

d 1 1 

1 1 1 

is not in the active subfield at the first iteration; then 
the two d pixels are deleted [since they must be in the 
active subfield) and on subsequent iterations c is pre- 
served as an endpoint. Thus, A2 tends to produce a 
medial curve which looks like a medial axis skeleton 
[:16] for many examples, but also produces some un- 
wanted spike branches [17], as on the left side of the 
letter A in Figure 6. Al trades off speed w:ith LW and 
SR to produce substantially thinner and srnaller medial 
curves and to preserve all connectivity properties. It 
also produces medial curves which are more visually 
desirable than those produced by A2. A2 achieves the 
best overall parallel speed and minimizes the number 
of redundant pixels, but produces a somewhat larger 
medial curve than Al. 

Algorithm A2 achieves its speed advantage over LW 
principally because of its superior performance on hori- 

TABLE II. Thinning Performance for Various Two-Subiteration Thinning Algorithms over Four Pattern Sets 

set1 ml 4.33 3.00 3.30’ 2.67 3.92 
26 x 5 m 0 0 12 1%” 20.3% 24.5% 
Rectangles 1113 18 21 ii* 24 23 

set 2 ml 7.67 4.58 6.30‘ 5.17 6.75 
40 x 6 m2 0 0 10.7%* 15.4% 25.7% 
Rectangles m3 30 37 33” 40 39 

sI?t 3 ml 8.00 4.67 5.00 5.00 6.33 
English m2 0.85% 0 6.91% 6.75% 14.1% 
Letters m3 78 83 82 84 88 

!Si?t4 ml 9.67 5.67 6.83 6.83 7.67 
Chinese m2 0.17% 0 6.21% 7.00% 14.5% 
Characters 

l 45’ and 135’ casts excluded 

m3 286 306 304 312 332 
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FIGURE 6. Thinning Results for Algorithms Al, A2, ZS, LW, alnd SR for the English Letter A Drawn from Test SIet 3 
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zontal and verti :a1 rectangular objects. Since a two- 
subiteration algorithm like LW cannot delete pixels 
from north and south or east and west boundaries 
within one subiieration [El, the best performance 
achievable on an m x II pixels rectangle (m > n), ori- 
ented horizontally or vertically, appears to be II - 1 
iterations. (Inter .or pixels cannot be deleted, otherwise 
holes may be created.) A fully parallel approach which 
only deletes boundary ones (ones four-connected to g) 
would require Lu/ZJ iterations. A2 approaches this fully 
parallel perform lnce as n grows large since a non- 
boundary pixel which is four-adjacent to a boundary 
pixel can be deMed on the iteration following the dele- 
tion of the boundary pixel. Figure 8 illustrates this 
process by indiciiting the iteration in which each de- 
leted pixel is rerloved. We note that in the second 
iteration A2 delc tes all boundary pixels which are 
not on the medill curve. This property applies to all 
iterations after the first and A2 typically requires 
5 Ln/2J + 1 itenltions (when 1z > 1) for these m x n 
rectangles. Al, ZS, and LW each require four iterations 
on such rectangles of width five and typically require 
n - 1 iterations for these m X n rectangles. LW is faster 
than A2 on diagonal rectangles (45” and 135”) but this 
speed advantage is principally due to LW’s failure to 
produce thin diagonal medial lines. A diagonally ori- 

121; 12121212121 
2*2: 232323232*2 
12*+ ********x21 

2*2: 232323232*2 
1212 12121212121 

FIGURE 8. Itemtions when A2 Deletes Pixels for a 5 x 15 
Horizontal RectangL? (Iteration 1 Locations Indicate the Position of 

Subfie d 1; Medial Curve Denoted by *) 

ented boundary (45” or 135”) is composed of pixels all 
within a single subfield and is entirely deletable by A2 
in one iteration vrhen that subfield is active. In the 
iteration after thc!se boundary pixels are deleted, the 
new boundary pixels are in the opposite subfield which 
is currently active and are in turn entirely deletable. As 
a result successive iterations of A2 are able to delete all 
of these diagonal boundary pixels until the region of 
the ,medial curve is reached. Thus, the parallel speed of 
A2 (like LW) on these diagonal boundaries comes close 
to that achievable by a fully parallel approach. Finally, 
results on the natural characters, Sets 3 and 4, indicate 
that A2 tends to produce faster thinning for naturally 
occurring distributions of line orientations. 

A2 produces medial curves with a “zigzag” pattern 
for certain object orientations and widths (e.g., horizon- 
tal and vertical rcmctangles of even width). Although 
visually disconce::ting these “zigzag” patterns are of 

similar complexity to normal straight medial curves in 
a chain code representation and require no more stor- 
age. But, the “zigzag” patterns may represent a disad- 
vantage if an interpixel distance of 2’/’ between two 
d!iagonally adjacent pixels is used when estimating 
curve length. Although this is an unusual result com- 
pared to traditional thinning algorithms, t:his form of 
medial line can provide, for example, the least biased 
estimate of the position of the central axis of a long 
two-width rectangle. Corner configurati0n.s for medial 
curves of rectangular objects of 0” or 90” orientation 
are symmetrical for rectangles with odd lengths and 
widths, since this places all corners in the same sub- 
field. For other cases where all corners are not in the 
same subfield, corner configurations are not precisely 
symmetrical. (See Figures 5 and 8 for examples.) 

F’ully Parallel Thinning Algorithms 
Two results [4, 91 which appeared after the submission 
of our work are pertinent and we take the opportunity 
to discuss these in our revision. Holt et al. [9] have 
proposed a fully parallel thinner which uses an effec- 
tive support of size 4 x 4. In order to fairly compare the 
parallel speed of competing algorithms we should re- 
strict supports for each in the same way. If we apply 
the 3 X 3 support restriction to [9], this algorithm is 
comparable to other two-subiteration algo:rithms and 
has been shown to exhibit substantially lower parallel 
speed than LW [7]. The later work of Chin et al. (CWSI) 
also proposes a fully parallel thinner which uses 3 x 3 
operators for reduction and 1 x 4 operators for restora- 
tion; thus, the overall operator support is over a 4 x 4 
region [4]. Again a comparison with algorithms using 
o.perators restricted to 3 x 3 support is tenuous. If CWSI 
is used with a 3 x 3 support restriction, then it can be 
configured as a two-subiteration algorithm where each 
fully parallel iteration over a 4 X 4 support requires 
two iterations over a 3 x 3 support. We have evalu- 
ated CWSI over our test sets and report the results in 
Table III where iteration counts are for the fully paral- 
lel 4 X 4 support. Figure 9 shows typical results for 
CWSI for the test objects of Figures 5, 6, and 7. The 
nlew fully parallel approach has higher iteration counts 
than LW and A2 for all test sets. If we apply the 3 X 3 
support restriction to CWSI, the iteration counts double 
and CWSI compares even less favorably to LW and A2. 
CWSI produces fewer redundant pixels (as measured by 
mz) than LW, but considerably more than ‘41 or A2. For 
example, CWSI fails to delete any pixels in. any two- 
width 135” line of the following sort 

11 
11 . 

11 

But, CWSI does have on average rather small medial 
curve sizes (m3) approaching those achieved by Al. 
The principal reason for identifying fully parallel ap- 
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TABLE III. Thinning Performance for the Fully Parallel Thinner 
CWSI [4] 

Set 1 
25 x 5 
Rectangles 

Set 2 
40 x 6 
Rectangles 

Set 3 
English 
Letters 

3.17 6.2% 20 

5.50 6.8% 32 

5.67 2.2% 77 

Set 4 
Chinese 
Characters 

proaches is to reduce number of required iterations, but 
CWSI does not appear to achieve that objective when 
compared to LW and A2. This unexpected result is 
partly explained if we consider the 30” line case illus- 
trated in Figure 10 where A2 outperforms CWSI. Here 
pixels, p, with neighborhoods of the following form (or 
90” rotations) 

111 

1 P 1 
1 0 0 

are not deletable by CWSI, but are deleted by A2 when 
p is in the active subfield. 

6. SUMMARY 
Two parallel thinning algorithms have been presented 
which use two subiterations. The first, Al, modifies the 
algorithms of Zhang and Suen [21] and Lti and Wang 
[lo] to preserve connectivity and produce thin medial 
curves. The second, A2, uses two subfields with a mod- 
ification of the classical thinning approach of Rosenfeld 
and Kak [I?‘]. Both new algorithms preserve image 
connectivities and produce thinner results than other 
two-subiteration algorithms considered in our tests 
[lo, 19, 211. Algorithm Al provides the smallest medial 
curves with thinness comparable to Algorithm A2. 
A2 produces the highest parallel speed among two- 
subiteration thinners and its parallel speed is also 
shown to be superior to a recently reported fully paral- 
lel thinning approach [4]. 

Acknowledgment. The authors acknowledge the 
thoughtful reviews of the referees which helped to im- 
prove the clarity of this manuscript. 

........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ 

.... ...... ........ .......... ............ .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. .............. ............. ........... ......... ....... ..... 

. . . ..... ...... ...... ........................ ...... ........................ ...... ...... . ....................... ........................ ...... ........................ ...... 
...... ...... ...... ...... ...... ..... .i.. 

FIGURE 9. Thinning Results for CWSI for the Test Objects of 
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12**4321 123*X212 
12**4321 212**321 

1***3321 12*2X232 
1222221 2*2*212 
11111 12121 

CWSI A2 

FIGURE 10. Thinning Results on a 30° Line from Set 1 for CWSI and A:! (Numbers Give the Iteration when Pixels Are Deleted and the 
Medial Curve Is Denoted with *; Iteration 1 Locations Indicate the Position of Subfield 1 for A2) 

APPENDIX A 

Algorithm 1 prr serves the connectivity properties of 
any binary image as described in the following proposi- 
tions. Conditiors a, b, c(l), and c(Z) refer to the re- 
quired conditio:rs for deletion given for Algorithm 1. 

Proposition Al. No object in S can be completely de- 
leted by Algorithm 1 in any iteration. 

Proof: We prove the proposition for odd iterations, 
even iterations bllow similarly. Assume the contrary 
hypothesis; thus, an object, Q, exists which is com- 
pletely removec. in one iteration. Pixels in Q satisfy 
either of the conditions shown in Figure 3, (a) or (b). 
Figure 11 repea :s these conditions for the neighborhood 
of a pixel x1 with specific names for its neighbors. As- 
sume there is at least one pixel, x1, in Q satisfying (b) as 
illustrated in Fi:mre 11(b). Pixel f # 1 since its neigh- 
borhood does not satisfy (a) or (b). Since f = 0, then 
c = d = e = 0 to obtain C(x,) = 1; but then N(xl) = 1 and 
x1 cannot be deleted. Thus, all pixels in Q must satisfy 
(a). Figure 11(a) illustrates the neighborhood of one 
such pixel. Pixel d # 1 since its neighborhood does not 
satisfy (a). Since d = 0, to achieve N(xl) > 1 while 
preservingC(xl)=l,a=b=c=Oande=f=g=lor 
a=b=c=lande=f=g=O.Ineithercasetwoones 
(b and c or e ant f) will not satisfy (a) and will not be 
del.eted. Thus, Q does not exist and the contrary hy- 
pothesis is contradicted. 0 

Since Algorithm 1 converts only ones to zeros and 
only creates nevr zeros which are four-connected to 
existing zeros, the following is obvious. 

Corolla y A.2. Algorithm 1 does not connect any 
originally disjoint objects of S, nor does it dlisconnect an 
existing hole or create any new holes in S. 

Proposition A.3. Algorithm 1 does not dkconnect any 
object in S. 

Proof: It is sufficient to show that for any eight- 
connected path (x0, x1, . . . , x,) lying within a given 
object, Q, of S, where only x1, x1, . . . , xn-, are deleted 
at iteration i, there exists an alternate eight-connected 
path, P, in Q which connects x0 and xn and is composed 
of pixels which are not deleted at i [IS]. If we can show 
this result for II = 2, it is straightforward to induce the 
general result. Thus, we consider the three pixels x0, x1 
and xZ and specifically the eight-neighborhood of x1 
w’hich contains x0 and x2 (if Q contains less than three 
ones, condition b will always preserve it). Pixel x1 is 
deleted at i and we need to establish an alkrnate path, 
P, to maintain connectivity between x0 and xZ for any 
combination of x0, xZ positions. P must comain no pix- 
els which can be deleted at i. We give the proof for odd 
iterations. The proof for even iterations follows simi- 
1a:rly. Condition c(1) provides two neighborhood condi- 
tions where x1 could be deleted (Figure 11) and we 
formulate our enumeration of all possible c,ases around 
these two conditions. We need not consider cases 
wlhere x0 and xZ are eight-adjacent already. Further, for 
the case of Figure 11(a) a and g cannot be both ones 
since otherwise we would have either N(x,) = 4 (if 
b := d = f = 1) or C(x,) > 1 (if b, d or f = 0), violating 
the assumption that x1 is deleted. Figure 12 illustrates 
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c c b a b a c c 0 0 0 0 

d d Xl Xl 0 0 d d Xl Xl h h 

e e f 9 f 9 e e f 1 f 1 

(a) (a) (b) (b) 

FIGURE 11. Neighborhood Conditions Required for Deletion of x, 
in Odd Iterations of Al 

the three resulting cases from which the enumerations 
are taken. For the three cases (a), (b) and (c) there are 
16, 16, and 10 possibilities to consider, respectively. 
Figure 13 gives examples of each of the three cases. For 
the 16 possibilities derived from Figure 12(a), the pixels 
(b or d or both) eight-connecting x0 to x2 must be ones 
so that C(X,) = 1. (For the example of Figure 13(a), 
b = d = 1.) These b and d pixels are not deletable as 
they each fail condition c(l) and thus compose the re- 
quired alternate path P. The same form of argument 
applies to each of the possibilities derived from Fig- 
ure 12(b) and K!(C) except that the pixels d or f or both 
are required to be ones and compose the path P. (e.g., in 
the examples of Figure 13(b) and 13(c) d = f = 1 and d 
and f are not deletable since they fail condition c(l)). 0 

Lemma A.4. For any object, Q, with a hole, H, Algo- 
rithm 1 will preserve after any iteration at least two 
ones which are not eight-adjacent. 

Proof: Our proof is given for odd iterations. The 
proof for even iterations is similar. Referring to Fig- 
ure 14 let p1 be the one to the immediate left of a left- 
most zero, zl, in the hole H, and pz be the one to the 
immediate right of a rightmost zero, z,. (zl and zr 
could be the same zero.) By the definition of pl, neither 
(a*, aa) nor (bz, bs) can contain all zeros. Similarly from 
the definition of pz, neither {c2, c3J nor (dz, d3) can 
contain all zeros. Now the claim is that after any odd 
iteration: (1) at least one of the two elements 91 and p1 
will be preserved, and (2) p2 will be preserved. To show 
(l), first suppose 91 = 0. Then p1 is not deleted since 
C(pl) # 1. Now assume 91 = 1. If 91 is not deletable, we 
are done. If 91 is deletable, it must satisfy Figure 3(b) 
and al = a2 = 0 and bz = 1. Since a2 = 0, a3 = 1 and 
C(pl) # 1 and p1 is not deleted. To show (2) first assume 
92 = 0. Then pz cannot be deleted since C(pz) # 1. Next 
let 92 = 1 and assume pz is deletable. To satisfy Fig- 
ure 3(b) cz = cl = 0 and dI = 1. But since c2 = 0 and 
CB = 1, we have C(p2) # 1. This contradicts the assump- 
tion that pz is deletable; therefore, pz is preserved. Fi- 
nally, pz is not adjacent to p1 or 91 for any H. q 

Proposition A.5 Algorithm 1 does not connect any 
hole of S to another distinct hole or the background 
of s. 

Proof: Let H be any hole in S. Originally an object, 
Q, surrounds H. Assume H becomes four-connected to 
the background or another hole, via a path W of zeros, 
for the first time at iteration i. Then for any two non- 

C b a c b 0 c 0 0 

d Xl 0 d Xl 0 d X1 h 

e f 0 e f 9 e f 1 

(a) (b) w 

FIGURE 12. Classes of Neighborhoods of x, from which Enumerations are Formed in 
the Proof of Proposition A.3 

C b X0 C X0 0 X0 0 0 

d Xl 0 d Xl 0 d Xl X2 

e X2 0 e f X2 e f 1 

(a) UN P-1 

FIGURE 13. Example Neighborhoods from Each Class Shown in Figure 12 
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a1 a2 a3 c3 C2 Cl 
41 PI 21 H Zr PZ q2 

b, bz b, 4 dz d, 

FIGURE 14. Conditions around a Hole, II, Used in the Proof of 
Lemma A.4 

adjacent pixels, x1 and x2, remaining in Q after itera- 
tion i, there was an eight-connected path, R, connecting 
x1 and x2 in Q at i - 1 which was disconnected by W at 
iteration i. Lemma A.4 guarantees that Q contains at 
least two ones alter i, which are not eight-adjacent; 
thus x1 and x2 exist. But the proof of Proposition A.3 
shows that for path R an alternate path, P, exists at i 
connecting x1 ar.d x2 which is in the neighborhood of 
pixels of R and thus belongs to Q. P would disconnect 
the hypothetical path Wand thus W cannot exist and 
holes are preserred. 

Proposition A.C. C(p) = C,(p) (4) for all neighbor- 
hoods of p except for the case when p has four side 
mes; and in thk case C,(p) = 0 and C(p) = 1. 

Proof: Both cperations are symmetrical with respect 
to !30” rotations; thus, we need to show the result for 

only one orientation. We enumerate the cases we need 
ccnsider over the number of p’s side ones: 

x 1 x x 1 x d 0 x 

1 P 1 0 P 1 0 P ’ 

x 1 x x 1 x x 1 x 

(4 04 (4 

x 1 x a 0 x a 0 b 

0 P cl 0 P 1 c P 0 

x 1 x b 0 x c: 0 d 

(dl (4 (fl 

w:here x refers to a “don’t care” pixel (either a zero or 
one) and pixels u, b, c, and d are referenced below. 
When p has exactly four side ones, case (a).. C(p) = 1 
and C,(p) = 0. When p has exactly three side ones, 
case (b), C(p) = 1 is guaranteed and C,(p) =: 1. There are 
z cases to consider when p has exactly two side ones, 
cases (c) and (d). In case (c) C(p) = C,(p) = 1 when a = 0 
and C(p) = C,(p) = 2 when a = 1. For case (d) C(p) = 
C,(p) = 2. For case (e) C(p) = C,(p) = 1 + a + b and 
similarly for case (f) C(p) = C,(p) = a + b t c + d. Cl 

APPENDIX B 

Algorithm 2 preserves the connectivity properties of Proof: We use the approach in the proof of Proposi- 
any binary image as described in the following proposi- tion A.3. Thus, it is sufficient to consider an object, Q, 
tions. Condition: a, b, and c refer to the three required with three or more ones and show that given any three 
conditions for d4etion given for Algorithm 2. ones x0, x1, and x2 forming a path in Q whe:re x0 and x2 

Proposition B.Z. No object in S can be completely 
deleted by Algol*ithm 2 in any iteration. 

Proof: Assume the contrary hypothesis. Thus, an ob- 
ject, Q, exists w nich is deleted in one iteration and Q 
must lie in only one subfield. Consider the neighbor- 
hood of any pixtJ, p, in Q. This neighborhood will con- 
tain from 0 to 4 mes in the subfield of p. Neighbor- 
hoods with only 0 or 1 ones fail condition c. Neighbor- 
hoods with 2, 3, or 4 ones cannot be eight-connected, 
by the subfield definitions; and thus, C(p) > 1 failing 
condition a. ThL.s, p cannot be deleted which contra- 
clicts the contrary hypothesis. 0 

are not eight-adjacent; deletion of x1 at any iteration i 
will guarantee that an alternative path, P, exists which 
co:nnects x0 to x1. Pixels of P must not be deletable 
during iteration i. Refer to x1’s subfield as S, and the 
other subfield as S2. Since pixels in S2 will not change 
during i, it is sufficient to show that P exists and is 
wholly in SZ for any possible positions of x0 and x2 in 
the neighborhood of x1 with x0 not eight-adjacent to x2. 
One such case is illustrated below 

d xt b 

c X2 
Since Algorithm 2 converts only ones to zeros and 

,nly creates nevr zeros which are four-connected to 
:xisting zeros, (condition b) the following is obvious. 

In this case x1 must satisfy condition a to be deletable 
and this requires a = b = 1 or d = c = 1. In either case P 
exists drawn from the set of pixels (a, b, c, a!] which 

Corollary B.2. Algorithm 2 does not connect any belong wholly to SZ. All cases lead to a similar result 
originally disjoint objects in S, nor does it disconnect an where P must exist to make C(x,) = 1 and is drawn 
existing hole or :reate any new holes in S. from the set (a, b, c, d]. 0 

Proposition B.3 Algorithm 2 does not disconnect any Proposition B.4. Algorithm 2 does not connect any 
lbject in S. hole of S to another distinct hole or the background of S. 
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Proof: Assume the contrary hypothesis holds and hood, are four-connected to x1 and partition the other 
that two originally unconnected components of She- six neighbors into two four-connected sets as illustrated 
come four-connected for the first time at iteration i via for one case below 
path W. W contained a set of one or more ones, T, 
which where deleted at i. Since no two members of a b c 

either subfield are four-connected through pixels in 
the same subfield, none of the members of T are four- x0 Xl x2 
adjacent. Thus, in the path W any member of T, x1, is 
surrounded by two pixels, x0 and x2, which were zero d e f 

before i. (We assume that W is defined to include at 
each end zeros belonging to the distinct components To be deleted x1 must satisfy conditions a and c, but 
of g) For at least one member of T, x1, x0, and x2 were since x0 = x2 = 0 this can only occur if exactly one of 
not four-connected before i, but are four-connected by the neighbor sets contains all zeros (e.g., a = b = c = o 

x1 at i. Otherwise, the two distinct components of 5 or d = e = f = 0 in the example). All cases produce this 
were already four-connected before i. We show in the form of result where for x1 to be deletable x0 and x2 are 
following that this case cannot occur. Consider the already four-connected, contradicting the contrary 
neighborhood of x1. x0 and xZ belong to this neighbor- hypothesis. cl 
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