mo 1 P | Lh} LN r

1 u-ur'-wwl LA

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992 869

Thinning Methodologies—A Comprehensive Survey

Louisa Lam, Seong-Whan Lee, Member, IEEE, and Ching Y. Suen, Fellow, IEEE

Abstract— This article is a comprehensive survey of thinning
methodologies. It discusses the wide range of thinning algorithms,
including iterative deletion of pixels and nonpixel-based meth-
ods, whereas skeletonization algorithms based on medial axis
and other distance transforms will be the subject matter of a
subsequent study.

This self-contained paper begins with an overview of the
iterative thinning process and the pixel-deletion criteria needed
to preserve the connectivity of the image pattern. Thinning
algorithms are then considered in terms of these criteria as well

as their modes of operation. This is followed by a discussion of

nonpixel-based methods that usually produce a center line of the
pattern directly in one pass without examining all the individual
pixels. Algorithms are considered in greater detail and scope here
than in other surveys, and the relationships among them are also
explored.

Index Terms—Parallel thinning, sequential thinning, skeleton,
skeletonization, thinning,

1. INTRODUCTION

N THE EARLY years of computer technology, it was

realized that machine recognition of patterns was a pos-
sibility, and together with this arose the need for reducing
the amount of information to be processed to the minimum
necessary for the recognition of such patterns. It seems that
the earliest experiments in data compression were conducted
on character patterns in the 1950’s. In [37], it was found that
an averaging operation over a square window with a high
threshold resulted in a thinning of the input image, and in [61],
the “custer” operation was an early attempt to obtain a thin-
line representation of certain character patterns. The thinned
characters were used for recognition in [107], [32], and [2].
This practice has been widely used since then (for example,
[18], [117], [67], [121], and [69]), and integrated circuits have
been designed for this purpose [96].

During these years, many algorithms for data compression
by thinning have been devised and applied to a great variety
of patterns for different purposes. In the biomedical field,
this technique was found to be useful in the early 1960’s,
when a “shrink” algorithm was applied to count and size
the constituent parts of white blood cells in order to identify
abnormal cells [58], [94]. Since that time, applications in

Manuscript received August 6, 1990; revised June 21, 1991. This work
was supported by the Natural Sciences and Engineering Research Council of
Canada, the National Network of Centres of Excellence program of Canada,
and the FCAR program of the Ministry of Education of the province of
Québec. Recommended for acceptance by Associate Editor C. Dyer.

L. Lam and C. Y. Suen are with the Centre for Pattern Recognition and
Machine Intelligence, Concordia University, Montreal, Québec, Canada H3G
1M8.

S. -W. Lee is with the Department of Computer Science, Chungbuk National
University, Cheongju, Chungbuk, Korea.

IEEE Log Number 9201772.

this area have included analyses of white blood cells [36]
and chromosomes [51], [52], automatic X-ray image analysis
[95], and analysis of coronary arteries [81]. In other sectors,
thinned images have found applications in the processing
of bubble-chamber negatives [73], the visual system of an
automaton [43], fingerprint classification [74], quantitative
metallography [68], measurements of soil cracking patterns
[83], and automatic visual analyses of industrial parts [75]
and printed circuit boards [133].

This wide range of applications shows the usefulness of
reducing patterns to thin-line representations, which can be
attributed to the need to process a reduced amount of data as
well as to the fact that shape analysis can be more easily
made on line-like patterns. The thin-line representation of
certain elongated patterns, for example, characters, would be
closer to the human conception of these patterns; therefore,
they permit a simpler structural analysis and more intuitive
design of recognition algorithms. For example, a partially
abstract, graph-like skeleton has been considered to be a link
between the abstract description of a letter and its physical
representation as a character [28]. In addition, the reduction
of an image to its essentials can eliminate some contour dis-
tortions while retaining significant topological and geometric
properties. In more practical terms, thin-line representations
of elongated patterns would be more amenable to extraction
of critical features such as end points, junction points, and
connections among the components (e.g., see [56]), whereas
vectorization algorithms often used in pattern recognition tasks
also require one-pixel-wide lines as input. Naturally, for a
thinning algorithm to be really effective, it should ideally
compress data, retain significant features of the pattern, and
eliminate local noise without introducing distortions of its own.
To accomplish all that using the simplest and fastest algorithm
is the challenge involved.

Perhaps as a result of its central role in the preprocessing
of data images or perhaps because of its intrinsic appeal,
the design of thinning or skeletonization algorithms has been
a very active research area. About 300 articles have been
published on various aspects of this subject since its inception;
therefore, it is felt that a comprehensive survey of this area is
due. There have been other comparisons and survey articles
in the field ([120], [53], [30], [111]), and some authors have
included comparisons with other results in their publications
(for example, [122], [77], [26], and [24]). The aim here is to
collect most (if not all) of the articles in this field published
in English, to classify and discuss them according to the
methodologies employed, and to include areas not usually
covered in the other surveys—morphological skeletonization,
3-D skeletonization, and grey-scale thinning. All of these will

0162-8828/92$03.00 © 1992 IEEE

Foremongt

870 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992

be discussed under a consistent set of terminologies (where
variations will be mentioned) in the hope that such a unified
treatment would be helpful.

This article is organized as follows. Section II contains
an overview of the thinning process and pixel deleting cri-
teria. In Sections Il and IV, sequential and parallel thinning
algorithms, respectively, will be discussed, whereas the nonit-
erative nonpixel-based methods will be considered in Section
V. This article will conclude with some observations and
remarks in Section VI. In a separate follow-up article, we will
consider medial axis and other distance transforms, extensions
of thinning algorithms to 3-D and grey-scale images, and we
will include a brief discussion of morphological skeletoniza-
tion.

II. OVERVIEW OF THINNING

The term “skeleton” has been used in general to denote a
representation of a pattern by a collection of thin (or nearly
thin) arcs and curves. Other nomenclatures have also been used
in different contexts. For example, the term “medial axis” is
also used to denote the locus of centers of maximal blocks that
are also equivalent to the local maxima of chessboard distance
[101]. Some authors also refer to a “thinned image” as a line-
drawing representation of a pattern that is usually elongated. In
recent years, it appears that “thinning” and “skeletonization”
have become almost synonymous in the literature, and the term
“skeleton” is used to refer to the result, regardless of the shape
of the original pattern or the method employed. In this paper,
we will observe the general usage of the term “skeleton”;
however, we will refer to methods involving determination of
centers of maximal blocks as “medial axis transformations,”
whereas the reduction of generally elongated patterns to a
line-like representation will be considered as “thinning.” This
seems to be a reasonable way to distinguish between different
methodologies while recognizing that the results can be quite
similar in appearance.

In this section, we consider some general aspects of iterative
thinning algorithms or, more precisely, the algorithms that
delete successive layers of pixels on the boundary of the pat-
tern until only a skeleton remains. The deletion or retention of
a (black) pixel p would depend on the configuration of pixels in
a local neighborhood containing p. According to the way they
examine pixels, these algorithms can be classified as sequential
or parallel. In a sequential algorithm, the pixels are examined
for deletion in a fixed sequence in each iteration, and the dele-
tion of p in the nth iteration depends on all the operations that
have been performed so far, i.e., on the result of the (n—1)th
iteration as well as on the pixels already processed in the nth it-
eration. On the other hand, in a parallel algorithm, the deletion
of pixels in the nth iteration would depend only on the result
that remains after the (n—1)th; therefore, all pixels can be
examined independently in a parallel manner in each iteration.

In the following discussion (as in the literature), the terms
iteration and cycle are used interchangeably, as are the terms
subiteration and subcycle. The term pass has been used to
denote either iteration or subiteration, but it will be used to
mean subiteration here.

x| %%

1P [*%

% | % | %
Fig. 1. Pixels of N(P).

The following notations will be adopted in the discussion
below. It is understood that a pixel p examined for deletion is
a black pixel, and the pixels in its 3 x 3 window are labeled
as shown in Fig. 1.

The pixels z1,2s,...,zs are the 8-neighbors of p and are
collectively denoted by N(p). They are said to be 8-adjacent
to p. The pixels z1,xs3,z5,z7 are the 4-neighbors of p and
are 4-adjacent to p.

We will use z; to denote both the pixel and its value 0 or
1, and z; is called white or black, accordingly. The number of
black pixels in N(p) is denoted by b(p). A sequence of points
Y1, Y2, ... Yn is called an 8-path (4-path) if y; 1 is an 8- (or
4-) neighbor of y;,7 =1,2,...,n— 1. A subset of a picture
P is 8- (or 4-) connected if for every pair of points z,y in Q
there exists an 8- (or 4-) path from z to y consisting of points
in Q. In this case, @ is said to be an 8- (or 4-) component of P.
The order of connectivity of P is the number of components
of its complement P, and if this order is 1, we say that P is
simply connected; otherwise, P is multiply connected.

A pixel p is 8- (or 4-) deletable if its removal does not
change the 8- (or 4-) connectivity of P. The pixels considered
for deletion are contour pixels. It has been suggested [38] that
the satisfying duality of P and P having different types of
connectivity would ¢liminate the paradoxes of P and P, being
both connected or both disconnected [98]. Since it is desirable
for a skeleton to have unit width, the choice would be to adopt
8-connectivity for P and 4-connectivity for P. This is assumed
in the rest of the paper unless otherwise stated, and the reader is
referred to the original publications for the (usually) analogous
formulations using the other metrics. One consequence of this
choice is that connectivity can be preserved by deleting only
those pixels of P that are 4-adjacent to P. Therefore, contour
pixels are usually defined as those having at least one white 4-
neighbor ([104] and [18] are exceptions). We will assume the
common definition of contour pixels, unless otherwise stated,
and note that contour points have also been called edge points
[77] and border points [62]. Noncontour black pixels are said
to be interior points. We will also consider p to be an end
point and retained if b(p) = 1; this will be referred to as the
end point (or end pixel) condition. This condition is applied
differently by some authors: p may be retained when there are
two or three consecutive black pixels on one side of N(p)
[77], the condition may be applied only after the first two
iterations [57], or it may be omitted entirely in order to avoid
spurious branches [18].

LAM et al.: THINNING METHODOLOGIES

Most of the differences between algorithms occur in the tests
implemented to ensure connectedness. This property has been
defined in terms of crossing number, connectivity number, and
pixel simplicity.

There are two definitions of the crossing number of a
pixel. Rutovitz [103] first proposed this useful measure of
connectivity as the number of transitions from a white point
to a black point and vice versa when the points of N (p) are
traversed in (for example) counterclockwise order. Therefore,
this crossing number can be defined as

8
Xr(p) =Y it — @i
=1

where T9 = 21, and it is equal to twice the number of black
4-components in N(p). Deletion of p would not affect 4-
connectivity if Xg(p) = 2 since the black pixels in N(p)
are 4-connected in these cases. However, since disjoint 4-
components can be 8-connected, skeletons obtained using this
crossing number can contain 8-deletable pixels, and these
skeletons are sometimes said to be imperfectly 8-connected
[24] or are more than one pixel wide. In order not to belabor
this point, we will assume that this will be understood in
later sections and that skeletons obtained this way would
usually need postprocessing to replace 4-connectedness with
8-connectedness. For this purpose, various algorithms can be
applied, for example, those in [100] or [8].

Hilditch [52] defined the crossing number Xy (p) as the
number of times one crosses over from a white point to a black
point when the points in N(p) are traversed in order, cutting
the corner between 8-adjacent black 4-neighbors. Therefore

Xu(p) = _Z b;

where

b 1if Toi_1 = 0 and (1‘25 =1lor T2i41 = 1)
7] 0 otherwise

and Xy (p) is equal to the number of black 8-components
in N(p) except when p has all black 4-neighbors, in which
case Xg(p) = 0. Obviously, for both definitions of crossing
number, a pixel having all black 8-neighbors would have
crossing number 0 as would an isolated pixel. If Xg(p) = 1,
deletion of p would not change the 8-connectedness of the
pattern.

Another difference between the crossing numbers X g (p)
and Xpg(p) is that the condition X5 (p) = 1 would also
imply that p must also be a contour point (having at least
one white 4-neighbor), whereas Xg(p) = 2 does not ensure
such a condition since this would be satisfied if p has exactly
one white corner neighbor. In order to avoid deleting p in this
case (and creating a hole), another condition is needed (for
example, b(p) < 6) to ensure that p is a contour pixel.

An equivalent but more readily computable form of the
crossing number Xy (p) is the 8-connectivity number of [134]

no [LA N N 1] et [N

I ‘ll“lrmllﬂ H

871
and [135] defined as

4
NZ(p) = Z (T2i-1 — T2i-1T2:%2i41)

=1

where Z implies “not x,” whereas the 4-connectivity number

4
NX®) = (@2i-1 — T2im1T2ii41)

i=1

represents the number of 4-connected components containing
the black 4-neighbors of N(p).

Furthermore, N8(p) is equal to the number of times the
pixel p would be traversed in a contour-following algorithm
for a connected component [135); therefore, pixels that are
retained (when N3(p) > 1) would be pixels that are traversed
more than once in the tracing process. At the same time,
deletable pixels have often been called simple, and it is proved
[99] that in a simply 8-connected pattern, a nonisolated contour
pixel p is simple if and only if N(p) has only one black
component, which is equivalent to Xy (p) = 1.

An alternative approach to preserving topology during thin-
ning is that the genus of P (and P) should remain invariant
[124], where the genus of P is defined as the number of
connected components of P minus the number of holes of P.
For any pixel p, its effect on the genus G can be determined
completely from the configuration of N(p). If deletion of p
does not change G, p is said to be “simple.” Since there are 256
configurations of N(p), these combinations can be examined,
and the ones where p is simple can be stored in a look-up
table. It can be readily verified that the concept of “simple”
based on genus is equivalent to that based on connectivity.

Pixels with connectivity number N3(p) greater than one
also belong to the category of multiple pixels [85]. These
pixels are considered to occur where a pattern “folds” onto
itself, and they include end points of branches, strokes that are
two pixels in width, and pixels that should be assigned to the
skeleton on the basis of the connectivity criteria. Consequently,
these pixels are retained in the thinning process. This notion
will be considered in more detail when the algorithms that
utilize them are discussed.

According to their modes of operation and the pixel test-
ing criteria used, many thinning algorithms can be broadly
classified according to the scheme shown in Table I. Under
this general scheme, sequential algorithms can operate by
processing only contour pixels or by raster scanning and
parallel algorithms by using 4, 2, or 1 subiterations. Both
classes of algorithms can ensure connectedness by finding
the crossing numbers Xg(p) or X (p) by matching against
thinning windows, by deleting only simple pixels, or by
retaining multiple pixels. These procedures, as well as other
less widely used methods, will be discussed more fully in the
next two sections.

III. SEQUENTIAL THINNING ALGORITHMS

Using sequential algorithms, contour points are examined
for deletion in a predetermined order, and this can be ac-
complished by either raster scan(s) or by contour following.

872

TABLE I
GENERAL CLASSIFICATION SCHEME
Pixel Testing Criteria
OPERATION
Xg(p) Xy(p) ‘Window Multiple/simple
matching pixels

s
E| Contour Arcelli (5] Beun (18} Pavlidis [85)
Q Pixels Wang [129) Pavlidis [86] Arcelli [10]
U Chu (261
E
N
T Raster Hilditeh (52)
}‘ Scanning Arcelli [8] Yokoi [134] Arcelli [14)
L
P || 4-subcycle Rosenfeld [100) | Stefanelli Arcelli (6]
A Hilditch [53) [115)
R
A Deutsch (35] Suzuki [118) Stefanelli
L § 2.gubeycle Zhang [136} Guo [49] (1151
: Chen {21)
L 1-subcycle Rutovitz [103) Chen [22] Chin [25]

Holt [54]

Contour following algorithms can visit every border pixel of
a simply connected object [99], and of a multiply connected
picture, if all the borders of the picture and holes are followed
[134]. Therefore, such methods, which have been utilized
previously without proof, have been shown to be valid in this
sense. Border following algorithms are also given in these
papers. These algorithms have an advantage over raster scans
because they require the examination of only the contour pixels
instead of all the pixels in P and P in every iteration. Some
algorithms that use contour tracing are seen in [10], [85], [26],
[126], [130], and [47], and the contours are traced using the
Freeman chain codes in [64].

When a contour pixel p is examined, it is usually deleted
or retained according to the configuration of N (p). To prevent
sequentially eliminating an entire branch in one iteration, a
sequential algorithm usually marks (or flags) the pixels to be
deleted, and all the marked pixels are then removed at the end
of an iteration. This generally ensures that only one layer of
pixels would be removed in each cycle.

To avoid repetition in the following discussion, we will
assume that a pixel p considered for deletion satisfies all the
following properties unless otherwise stated:

1. p is a black pixel.

2. p is not an isolated or end point, i.e., b(p) > 2.

3. p is a contour pixel, i.e., p has at least one white 4-

neighbor.

A seminal algorithm in sequential thinning is that of Hilditch
[52], which utilized the crossing number X g(p). The pattern
is scanned from left to right and from top to bottom, and pixels
are marked for deletion under four additional conditions that
were also stated explicitly in [78] and [111] but are included
here for completeness:

H1: At least one black neighbor of p must be unmarked.

H2: Xy (p) = 1 at the beginning of the iteration.

H3: If 73 is marked, setting z3 = 0 does not change X i (p).

H4: Same as H3, with x5 replacing z3.

Condition H1 was designed to prevent excessive erosion of
small “circular” subsets, H2 to maintain connectivity, and H3-
H4 to preserve two-pixel wide lines. The author also extended
the method to thinning of grey-scale chromosome images.

This algorithm has also been implemented for binary images

| oremenngt

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992

by other researchers using various techniques. Cellular logic
operations based on 3 x 3 neighborhoods are used in [48];
since a change in the value of p may induce a change only in
the pixels of N(p) in the next iteration, only these pixels need
to be processed. In [80], it was found that a sequential thinning
method based on raster scan and 3 x 3 operations can be
implemented using a pipeline structure to reduce the memory
and processing time required. In {91], connected horizontal
runs of black pixels are coded in interval tables (the use of
pointers in these tables implies that only a change of pointers
would be required when a shift operation is used on local
neighborhoods). The image that remains after one iteration
is found by inspection of the overlapping intervals in the
preceding, current, and next lines of the image. Alternatively,
contour pixels can be queued, with the change of a contour
pixel causing all its 4-neighbors to be queued and processed in
the next iteration [126]. The crossing number X (p) together
with a rough estimate K(p) of the convexity at p are used
as criteria for deletion of p in [97). K(p) is the maximum
number of 4-connected white points in N(p) and is intended
as a discrete equivalent for the notion of curvature. Under
this scheme, p is deleted if K(p) < Kr for some threshold
K, and conditions H2-H4 hold. Increasing the threshold Kr
results in skeletons less affected by contour protrusions (at the
risk of excessive erosion).

The thinning criteria of [52] are extended to k x k windows
(k > 3) in [84], where the center “core” of (k —2) x (k —2)
pixels can be deleted together if the boundary pixels in the
window have Hilditch crossing number 1 and if they contain
more than (k — 2) 4-connected white pixels and more than
(k —2) black pixels. For every black pixel, its k x k windows
are examined in the order of decreasing k until & < 3 or
the core is deleted. With larger values of k, thicker layers
of pixels can be deleted in one iteration; therefore, fewer
iterations would be required to obtain skeletons of thick
patterns. However, this increase in speed is achieved at the
expense of “coarser” results (noisy skeletons); in the thinning
of elongated patterns, the use of a larger k can be detrimental
to processing speed. The same thinning algorithm has also
been implemented in parallel in this work by using four
subiterations and examining one type of border pixels (north,
south, east, or west) in each subiteration.

In another early algorithm [134], every black pixel p is
examined and labeled according to the rule
I 2if$3=00rf3+f5+.’1}7=0,

(p)— 3iff3+$5=001'§3+55+f7+1‘1=0.
Then, two raster scans in opposite directions are performed
to remove pixels labeled 2 and 3, respectively, provided
these pixels are not end points and have connectivity number
1 (where 4- or 8-connectivity can be used). Although the
algorithm is simple and yields connected skeletons, vertical
strokes that are an even number of pixels wide and open at
one end can be completely eliminated.

In [18], the different criteria of [104] are used for contour
or edge points. For example, p is a west edge point if there
is at most one black pixel in the first column of N(p) and at
least 3 black pixels in the rest of N(p). In this case, an extra

LAM et al.: THINNING METHODOLOGIES

x|x|x x|x|x

0|10 0|1]x

y|yty 1({0}x
@ (®)

Fig. 2. Break point configurations; at least ome pixel in each group
marked x or y must be nonzero.

condition had to be imposed to prevent an interior pixel from
being marked as an edge point. Edge points are marked in
one raster scan after which the marked points are compared
against six 3 x 3 windows (those shown in Fig. 2 and their
90° rotations) and deleted if they are not break points, i..,
their removal does not create breaks in the pattern. It was
found that elimination of the end-point condition resulted in
less spurious tails. The procedure is repeated until no pixels are
deleted or for a preset maximum of three iterations, after which
a single “clean-up” scan is applied to remove all black pixels
that are not end points, break points, or interior points. The
results obtained from this procedure were not very different
from those of thinning carried through to the end, probably
because this algorithm was designed and tested on (almost
thin) character patterns.

The preceding algorithm assumes a smoothing preprocess-
ing phase; this is extended in [26], where smoothing is
performed before each iteration. In each iteration, contour
pixels satisfying the usual stated conditions are marked and
then examined for deletion as in [18] but with the endpoint
condition. When no more pixels can be deleted, a final
adjustment phase is introduced in which a skeletal pixel would
be moved to one of its 4-neighbors if the latter pixel has
a greater 8-distance from the background. In the process,
connectivity of the skeleton is maintained while skeletal points
are moved closer to the medial line of the original pattern.

The classical thinning algorithms mentioned in [87] also use
the windows shown in Fig. 2 together with their 90° rotations
to determine skeletal pixels. (For the sake of brevity, we use
90° rotations to also include 180° and 270° rotations when
different windows are generated). Since these windows, in
effect, only represent connectivity preservation criteria, their
sequential application to a pattern could result in excessive
erosion or serious shortening of branches. To overcome this
difficulty, a mixture of parallel and sequential operations is
proposed. Only one type of contour point is processed in each
subiteration, skeletal pixels are marked for retention through
all subsequent iterations, and a pixel q to be deleted is marked
so that it is considered to be a black pixel when its neighboring
pixels are checked in the current iteration. These conditions are
designed to preserve connectivity and prevent disappearance of
two-pixel wide lines, and they also retain end points without
requiring a specific condition.

A variation of this algorithm is based on the compilation of
an extensive list of thinning rules and consideration of 5 x 5
neighborhoods [42]. These larger neighborhoods are also used
in [69], where the pattern is raster scanned, and deletion of the
center pixel is based on comparison with 20 25-b templates
stored on a chip.

EE T U T W

873

The SPTA [77] is a sequential algorithm that uses two raster
scans per cycle, where the first is left to right, and the second
is top to bottom. In each scan, p is marked for retention (p is
a safe point) if one of the following is true:

N1: N(p) satisfies one of the windows in Fig. 2 or its
rotations.
N2: N(p) contains exactly two 4-adjacent black points.

These conditions are equivalent to a west contour point p being
safe if the boolean expression

z1(z2 + 23 + 27 + x3)(x3 + T4)(x7 + Ts) = 0.

In the first scan, west contour points are marked, then east
contour points that are not west safe points, and so on.
Condition N2 is intended to prevent excessive erosion of
diagonal strokes two pixels wide, but it can lead to noisy
branches [65]. In [16], a modification was proposed to SPTA
to eliminate (in most cases) the last pass when no pixels would
be deleted, and the modified algorithm was implemented on a
multiprocessor using the methods of a) function and b) data
decomposition. In a), each processor executes one scan, and
each completed row is moved to the processor performing the
next scan, whereas in b) each processor scans a portion of the
image with overlapping boundaries.

The Rutovitz crossing number Xg(p) is used to determine
pixel deletion in [5], [7], and [8]. In these algorithms, a slightly
different definition of contour pixel is used; here, a contour
pixel is a black pixel having at least one white 8-neighbor.
This condition together with the use of Xg(p) require an
additional condition (F = zjz3z5x7 = 0) to ensure that
holes would not be created when contour points are deleted.
Complete conditions for deletability of p while maintaining
connectivity are given in [5]; briefly, these useful conditions
are as follows:

1. If Xg(p) = 0 or 8, p is not deletable.

2. If Xg(p) = 2, p is deletable iff F/ = 0 and p is not an

end point.

3. If Xgr(p) = 4, p is deletable iff F = 0 and one of the

four corner pixels is 0 with 1°s on both sides. The latter

4
condition is equivalent to Y 9;_1T9;To;41 = 1.

i=1
4. If Xg(p) = 6, p is deletable iff one of its 4-neighbors

is 0 and the other three are 1’s belonging to distinct
4

4-components, or Y zg;—1 = 3.
' i=1

However, use of the above conditions by themselves would
give spurious end points and erode cormers. Therefore, a
solution is proposed in [5] to test p for deletion according to
the configuration of contour pixels in N(p). A “second level”
crossing number C N N (p) represents the number of transitions
from a contour pixel to a noncontour one (and vice-versa)
when the points of N(p) are traversed in order, and procedures
are derived for the deletion of p based on X (p), CNN(p),
and the number of 8-adjacent pairs of contour pixels among
the 4-neighbors of p.

Further work in preserving significant contour protrusions or
prominences in the thinning process are developed by Arcelli

I [L

874 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992

and Sanniti di Baja [7], [8], where prominences are first
detected and labeled. These significant protrusions are defined
as connected subsets of the contour that are beyond a threshold
distance from the interior or core (the noncontour pixels of P).
They are retained while the other contour pixels with Xz(p) =
2 are removed iteratively according to the conditions in [5] as
long as they are not necessary for maintaining connectedness
between the core and the prominences. When a set S with an
empty core is obtained, a label e(p) = 2(z5+z3)+z1+27+1
is assigned to each remaining pixel p in Sy. The nonmaxima
pixels under this label are removed, resulting in a skeleton that
is, at most, two pixels wide; then a final pass can be made to
destroy 4-connectedness in favor of 8-connectedness.

The skeletons obtained this way can be unduly influenced
at the end of a branch by the presence of a sharp protrusion
on one side (see Fig. 21a in [3]). In [3], a compression phase
was also implemented to represent each 3 x 3 window of P by
a grey-scale value derived from the number of black pixels in
the window. The reduced grey-scale image is then thresholded
with the connectivity constraints of Fig. 2 to a binary image
on which thinning is performed by an implementation of [8]
modified to preserve T junctions with length greater than one
pixel [109]. The skeleton is then expanded to the original scale.

When contour pixels p are traced sequentially and labeled,
multiple pixels, where a pattern “folds” onto itself, can be
easily determined [85]. Pixel p is multiple if at least one of
the following conditions holds:

P1: p is traversed more than once during tracing (connec-

tivity number > 1).

P2: p has no neighbors in the interior.

P3: p has at least one 4-neighbor that belongs to the contour

but is not traced immediately before or after p.

Since P1 includes pixels with a connectivity number greater
than 1, P2 includes end points, and P3 contains lines two
pixels wide, the concept of multiple pixels is quite inclusive.
However, if the contour is traced repeatedly and only the
multiple pixels from every tracing are retained, the result may
not be a connected skeleton. Therefore, in [85], multiple pixels
are called skeletal, as are 8-neighbors of skeletal pixels from
a previous iteration. These pixels form a skeleton that may
be too thick (and thus requires editing), but the algorithm
was proved- to be correct—it does terminate and produces
connected skeletons.

In [86] and [87], the characterization of multiple pixels is
redefined in terms of local neighborhoods and can therefore
be determined in sequence or parallel by comparison against
a set of masks. This requires the addition of window (c) to
those of Fig. 2 to produce the neighborhood patterns of Fig.
3 and their 90° rotations for multiple pixels.

The definition of multiple pixels is slightly modified in [88].
It is also proposed that a combination of sequential and parallel
operations may be more efficient for images where most of the
pixels do not require much processing. For such images, the
pattern can be divided into fields where each is assigned to
a processor. Each processor operates on the pixels of its field
sequentially, and when certain steps have been completed, it
waits until all other processors have completed the same steps

X x X X X X X b ¢ z
ojl1]o of1]=x o|1]4d
ylyiy 1j0]x y|y|=
(a) (b) (©

Fig. 3. Configurations of multiple pixel p. Each group of pixels marked x
or y must contain a nonzero element. In (c), at least one of the pixels marked
2 must be nonzero; if they are both nonzero, pixels marked x or y can have
any value. The pixel marked d is a contour pixel.

so that the processors can be-resynchronized.

The above algorithm essentially ensures skeleton connect-
edness by detecting and assigning multiple pixels M to the
skeleton S and then finding and assigning to S suitable
(skeletal, nonmultiple) pixels to connect M to the interior of
P. Since this may result in unacceptably thick skeletons when
P is not initially almost thin, an alternative algorithm that
deletes the nonmultiple pixels from the contour C' and retains
the remaining set as S is proposed [10]. At the same time,
contour information is used to determine whether a contour
pixel should be a) regarded as noise and not labeled multiple
or b) considered to be a significant convexity and assigned
to S even though it is not multiple. These are accomplished
by computing the n codes [45] of contour pixels from the
Freeman chain codes obtained in contour tracing. The 1-code
c; of pixel p; is the difference (modulo 8) between the chain
codes at p;, and for n > 1, the n code ‘

n—1
c? =nc; + Z ('fl - k)(ci_k + Ci+k)
k=1

determines the curvature of the contour at p;. The value of ¢;
is used to determine a), and if ¢! exceeds a threshold, then p;
is assigned to S so that it can represent a significant convexity.
Naturally, if the threshold value is lower, the algorithm would
be more sensitive to contour protrusions. Other works to
preserve such prominences have already been discussed [7],
[8]-

In [11]-[13], the concept of multiple pixels is developed
from another point of view; it is thought of as being the op-
posite of curve simplicity. In the continuous plane, a (closed)
curve is simple if and only if it never crosses itself; conse-
quently, a simple curve divides the plane into two connected
sets called the inside and the outside. This notion is extended
to the contour C of a digital pattern P for a simply connected
pattern in [11] and [12] and for a multiply connected figure in
[13]. In particular, C is considered to be simple, provided that.
it neither touches nor overlaps itself, and this global concept
was found to be equivalent to the following local conditions.
If we consider P — C to be the inside of C and P to be the
outside of C, then C is simple, provided that every p in C
satisfies the following conditions:

Al: N(p) N C consists of one (8-connected) component on

the inside and one (4-connected) component on the outside.

A2: N(p) N C contains at least two pixels that are horizon-

tally or vertically aligned: one belonging to the outside and

the other to the inside.

LAM et al.: THINNING METHODOLOGIES

The pixels satisfying the conditions A1 and A2 are said to be
regular, and those that are not regular coincide with multiple
pixels where contour arcs either coincide or are adjacent to
each other. Furthermore, since Al is computationally compli-
cated, it is shown in [13] that equivalently to Al and A2, a
contour pixel p is multiple if it satisfies at least one of the
following conditions:

A3: Neither the horizontal nor the vertical neighbors of p
are such that one belongs to P — C and the other to P.
A4: N(p) has three consecutive points such that the in-
termediate one is a diagonal neighbor and belongs to C,
whereas the other two belong to P.

Conditions A3 and A4 have the advantage of being local
conditions that are easily verified once the contour pixels are
located, and this is the method employed in [14]. By testing for
multiple pixels on the 4-distance transform of P, each succes-
sive contour is denoted by its label on the distance transform;
therefore, thinning can be accomplished in one raster scan.
During this pass, however, the already-visited neighbors of a
detected multiple pixel ¢ must be examined again to verify
whether any of them has been induced to become a multiple
pixel by the constraint to maintain connectedness. The skeleton
consists of all the multiple pixels detected, and it can be
reduced to unit width.

The Freeman chain codes are also used in [47] to detect
features such as 90 and 45° corners and T junctions in the
contours. This information is then used to retain certain pixels
in the contour-stripping process in an attempt to preserve such
features. Otherwise, this method deletes the contour pixel p if
Xu(p) =1and 2 < b(p) < 6.

In [132], the four types of contour pixels (east, north,
west, and south) are placed in buffers. Each type of buffer
point is sequentially processed and checked against windows
for connectedness and end-point preservation. If a point is
removable, its 4-neighbors are examined for inclusion in the
next contour and placed in the appropriate buffers. The process
is repeated until the buffers are empty.

The algorithms discussed so far are based on an examination
of contour pixels for deletion or retention. A different imple-
mentation method to produce a skeleton is that of contour
generation or the iterative generation of a new contour inside
the existing one until only a skeleton remains. This process
is based on the direction of the contour pixels in [131] and
[64]. When contour pixels are followed in sequence, three
such consecutive pixels would form an angle # with its vertex
at the current pixel p. The interior pixel in N(p) closest to the
bisector of # is considered to be a point on the next contour
[131], and p is deleted. When this procedure is repeated until
no interior pixels are left, a pseudo skeleton is formed by
the last contour. This simple method is greatly refined and
expanded in [64] by using the Freeman chain codes of the
contour pixels to generate the new contours. These chain codes
are used, together with breakpoint and endpoint considerations,
to derive a set of rules for the generation of the new contour.
When new contour pixels are determined, their chain codes are
also generated. The end pixel conditions of algorithms [77],
[6], and [136] can be incorporated into this algorithm [65]

[A N I O

875

to simulate the behavior of the previous algorithms, at least
at branch ends. This algorithm can also be implemented in
a distributed environment [66] by assigning nonoverlapping
subsets of the pattern to different processors for thinning and
then synchronizing information about the borders at the end
of each iteration. A similar procedure of successive contour
generation using chain codes is implemented in [127]. In this
recent work, a contour pixel is deleted if its 4-neighbors on
the “inward” side (away from the background) are all black,
in which case, the chain codes for the corresponding section
of the new contour are derived from a predefined set of rules
related to local curvature. These rules are simpler than those
of [64], and it is claimed that the same results are obtained
when pixels are processed in the same order.

In general, when the pixels of P are processed sequentially,
there is no problem in preserving the connectivity of P and
P when suitable 3 x 3 local operations are used. Therefore,
the requirement of topological preservation is met by these
algorithms. However, it would require more global information
to preserve the geometric features that are significant for a
shape analysis of P. For this purpose, a skeleton obtained
from a raster scan of P is seldom meaningful [5], whereas
an algorithm based on sequential following of the contour
clements may lead to better results. This latter method can
allow some correlation between the shape of the skeleton and
the external contour of the pattern that may not be possible to
achieve by local operations only. Of course, these more global
considerations would lead to increases in computation time and
more complicated procedures, and much of the complexity
in sequential algorithms (for example, [8], [10] and [85)) is
the result of efforts made to preserve more subtle geometric
features.

IV. PARALLEL THINNING ALGORITHMS

In parallel thinning, pixels are examined for deletion based
on the results of only the previous iteration. For this reason,
these algorithms are suitable for implementation on parallel
processors where the pixels satisfying a set of conditions
can be removed simultaneously. Unfortunately, fully parallel
algorithms can have difficulty preserving the connectedness of
an image if only 3 x 3 supports are considered; for example,
a horizontal rectangle two pixels in width may completely
vanish in such a thinning process. Therefore, the usual practice
is to use 3 x 3 neighborhoods but to divide each iteration
into subiterations or subcycles in which only a subset of
contour pixels are considered for removal. At the end of each
subiteration, the remaining image is updated for the next subit-
eration. Four subcycles have been used in which each type of
contour point (north, east, south, and west) is removed in each
subcycle [115], [101], [17]. These have also been combined
into two subiterations [115], [136], [21], [118], [49] with one
subiteration deleting the north and east contour points and
the other deleting the rest, for example. Other two-subcycle
algorithms have been devised to operate on alternate subfields
of the pattern that is partitioned in a checkerboard manner.
Recently, one-subiteration algorithms have been implemented,
but these invariably have to use information from a larger

| Ioremoag

876 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992

context in order to preserve connectivity. These algorithms
will be examined in greater detail below.

A fundamental parallel algorithm was proposed in [103],
where a pixel p is deleted iff all the following are true:

R1: b(p) > 2

R2: X R(p) =2

R3: r1x375 = 0 or Xgp(z3) # 2

R4: z7z123 = 0 or Xg(z1) # 2.

This algorithm is also described in [115] with the added
condition that b(p) < 6 to ensure that p has a white 4-
neighbor; therefore, deletion of p would not create a hole.
This is a one-subiteration algorithm that uses information from
a 4 x 4 window, and it does yield connected skeletons that are
insensitive to contour noise [115] but can result in excessive
erosion [116], [79], [70], [39]-

Since disjoint 4-components may be 8-connected, the re-
moval of all pixels satisfying the above conditions does not
reduce diagonal lines to unit pixel width. Additional conditions
were added specifically to address this problem and to allow
for deletion of pixels p with Xg(p) = 4 when p lies on a
diagonal line two pixels wide {33], and this was proved to
preserve connectedness [34]. Due to the asymmetric nature of
conditions R3 and R4, the skeleton would not lie centrally;
therefore, 180° rotations of these rules were introduced [35]
to result in the following complete set of rules for the removal
of p:

D1: Xg(p) = 0,2,0r4

D2: b(p) # 1

D3: x1z325 = 0

D4: z;x327 = 0

D5: If Xg(p) = 4, then in addition, a) or b) must hold:

a)yrixr =lLxo+ 26 #0,and 23+ 24+ 25 + 23 =0
b)ziz3 =124+ 23 #0,and z2 + x5 + 6 + 27 =0

D6-D8 are 180° rotations of D3-D5.

It was also suggested that two subiterations should be used,
where the first one deletes pixels satisfying D1-D5, and the
second deletes according to D1, D2, and D6-D8. Of course,
this algorithm deletes isolated pixels. The complexity of the
rules D1-D5 led to the observation [44] that if two consecutive
4-neighbors of p are 1’s, then the value of the corner pixel
q in between has no effect on whether p should be deleted;
therefore, ¢ can be considered to be 1. In such cases, p can be
deleted if its modified crossing number is 2 provided b(p) > 1.
It should be noted that this modification of the crossing number
is the corner-cutting process in [52]; therefore, the resulting
number is actually twice Xg(p), and, of course, it measures
8- rather than 4-connectivity.

The crossing number X g(p) is also used as a criterion for
a filling operation before thinning. In [123], a white pixel ¢
with Xg(q) > 2 is considered to be a connecting point and
is filled. Then, a 4-subiteration algorithm is implemented in
which end points (having exactly one black 4-neighbor) and
pixels p with Xgp(p) > 2 are considered skeletal, whereas
nonskeletal contour pixels are deleted.

The much-cited work of Zhang and Suen [136], which is
also summarized in [46], is an implementation of a subset of
conditions D1-D8 in two subiterations. In the first subiteration,

p is deleted if it satisfies the following conditions:

Z1: 2 < b(p) < 6

Z2: X R(p) =2

Z3: zyz307 = 0

Z4: z1x7x5 = 0.

In the second subiteration, Z3 and Z4 are replaced by their
180° rotations. Therefore, the first subcycle deletes 4-simple
pixels on the south and east borders as well as north-west
corner pixels, whereas the second subcycle deletes pixels with
opposite orientations. This is a simple and efficient algorithm
that is also immune to contour noise [21]; however, two-pixel-
wide diagonal lines can be seriously eroded, and 2 x 2 squares
would vanish completely [70], [71]. It was suggested that
condition Z1 should be replaced by 3 < b(p) < 6 in order to
retain such structures. As can be expected, such a modification
creates problems of its own in retaining extraneous pixels;
therefore, an additional pass was proposed [128] in order to
thin to unit thickness, further increasing the computation time.

Although excessive erosion of diagonal lines is not a
topological problem, complete disappearance of a 2 x 2 square
in the thinning process renders the algorithm invalid from the
topological point of view. This was shown [39] to be the only
possible configuration where the algorithm is not valid, and
a modification to [136] was suggested so that all conceivable
cases could be correctly processed. The modification depends
on the number of black 4-neighbors of p when Xg(p) = 2.If p
has none or one such neighbor, no change would be required. If
p has two or three such neighbors and p satisfies the existing
conditions, then p can be deleted in the first subiteration if
27 = 0 or z7 = 0 and in the second if 3 = 0 or z5 = 0.

In [129] and [130], conditions D1, D2, and D8 from [35] are
implemented sequentially with minor differences. The more
recent algorithm does not delete isolated pixels (Xr(p) = 0).
It requires 2 < b(p) < 6, and it does not preserve 4-
connectivity. Therefore, a pixel p at the vertex of a right angle
formed by two 4-neighbors would be deleted, thus leading
to condition o + g # 0 being unnecessary in rule D8(a)
and analogously for D8(b). These authors also implemented
a two-subcycle parallel algorithm that deletes (in the first
subiteration) east or south boundary points and northwest
corner points with Xg(p) = 2 as well as contour pixels
with Xr(p) = 4 satisfying condition D8; pixels with opposite
orientations are deleted in the second subiteration. Another
two-subiteration implementation of conditions D1-D8 of [35]
is that of [21]; it contains the same minor differences as [129]
and [130], and it claims to be an improvement over [136]
in eliminating excessive erosion. In this work, the rules are
implemented by table lookup; each of the 256 configurations
of N(p) is converted into an address in the thinning tables
(one for each subiteration), where the new value of p (0 or
1) is defined.

In order to use only one subiteration per cycle, information
from a 4 x 4 window containing p is considered [54] in order to
determine its deletion. For this algorithm, p is an edge point
(edge p is true) iff N(p) contains between two and six 4-
connected black pixels, i.e., Xgr(p) = 2 and 2 < b(p) < 6.

LAM et al.: THINNING METHODOLOGIES

Rutovitz 66 [103]

Deutsch 69 [33] Holt 87 [54] Zhang &
Wang 88 (137]
Deutsch 72 [35) Hall 89 [50]
Zhang & Wang & Chen 88 [21]
Suen 84 [136] Zhang 86 [129)
Ld & Wang 85 [70] Eckhardt 88 (39] Abdulla et al 88 (1]

Sossa 89 (114]
Wang et al 86 (128}

Fig. 4. Family tree of thinning algorithms based on Rutovitz.

Then, p is deleted iff condition H is true, where

H: (edgep) A(~edgez, VI3 VT,)
A(~edgez, VT VT,)
A (~ edge 1V ~ edge sV ~ edge z,)

With this condition, edge information on neighboring pixels
is used to prevent the disappearance of vertical lines that
are two pixels wide. This algorithm is implemented [55] on
SIMD and MIMD machines with a modification to reduce
redundancy in the edge computation of elements with common
neighbors. Condition H is shown [137] to be almost equivalent
to R1-R4 of [103], where the crossing number instead of
edge information of neighboring pixels is considered. The only
differences are that the earlier work stipulates b(p) > 2, and
the conditions of [54] would add the condition “or b(z3) ¢
[2,6]” to R3 (and “or b(z1) & [2,6]” to R4). In turn, [137]
also proposes (without results) to modify the conditions R1-
R4 by changing R1 to 2 < b(p) < 6 and the second parts of
R3 and R4 to y3 = 1 and y; = 1, respectively, where y; is
the east neighbor of x;, and y3 is the north neighbor of z3.
The first modification is also suggested by [S0] to preserve
diagonal lines in [54].

Besides all the modifications mentioned above, [1] and
[114] also suggest procedures to reduce, to unit thickness,
the skeletons obtained by [136]. Therefore, the algorithm
originally proposed by Rutovitz and modified by Deutsch has
been implemented with various levels of changes in a number
of articles, and the relationships between them are shown in
Fig. 4.

Despite the somewhat baffling array of modifications pro-
posed to the algorithm originating from Rutovitz, there are
many similarities among the results. Basically, the algorithms
of [103], [136], [54], [39], and [137] have the common
deficiency of possible excessive erosion in the thinning of
diagonal lines. The problem may depend on whether the
lines are at 45 or 135° to the horizontal, and lines that
are an even number of pixels in width seem to be more
vulnerable to erosion. The simple modification of {70] and

! | ' [A A AL

877

* *, . ..
* *, L *, o *,
** *h "t *x *, e
L] * *h e * *
EL *k Ak *, >,
J— A AR kR *, *,
4w xR s o,
R * %,
EL N 2 4 *, >
*x ** », *,
' 'Y *, e
* * * *
C) () © @

Fig. 5. Results of thinning by different algorithms based on Rutovitz: (a) See
[54], [103], [136], and [138]; (b) see [39]; (c) see [50] and [70]; (d) see [128].

[50] solves this problem by retaining extraneous pixels and
creating skeletons of more than unit width. The skeleton is
then thinned (incompletely) by a second pass in [128]. Fig.
5 shows a typical example of thinning a problematic pattern
using these algorithms.

Necessary and sufficient conditions for preserving topology
while deleting border points in parallel are given in {100].
If only 3 x 3 local neighborhoods are considered, then an
operation that deletes (for example) north border pixels would
preserve topology iff the only north border points it removes
are simple and have at least two 1’s as 8-neighbors. It is
proved [124] that this operation would not change the genus
number of P. This algorithm was implemented in [101], where
4-connected skeletons are observed to contain more noisy
branches.

Equivalent conditions for the simplicity of a border point are
given in [6], where it is shown that a north border point with at
least two 1’s as 8-neighbors would be simple iff x5Z72, = 0

4
and) Tor—1Z2kTok+1 = 0. These conditions are combined
into zo_nle in [102].

Another 4-subiteration algorithm is that of [17], where
skeletal pixels found in each iteration are assigned the iteration
number for the subsequent calculation of object width. The
values of skeletal pixels from previous iterations are left
unchanged, whereas those of interior pixels are incremented
by one in each iteration. In the nth iteration, pixel p is tested
for deletion as a north border element if 3 = 0, p has value n,
and x7 # 0. Such a border element p is considered skeletal if
there exists z; € N(p) such that z; > 0 and N(z;) N N(p) =
{p, z:}; otherwise, p is assigned the value 0 and deleted. This
algorithm preserves topology but was found to be sensitive to
boundary noise and the order of the subiterations.

Parallel algorithms using both four and two subiterations
have also been implemented by means of matching against
windows analogous to those of Fig. 2. Stefanelli and Rosenfeld
[115] implemented two such algorithms and proved that they

" preserve topology. In each subcycle, the final (skeletal) pixels

are stored. In order to avoid deletion of contour points that
are also final points, all the contour points are first deleted,
after which the final points are added. When four subcycles
are used and north border points are considered for deletion,
the final point conditions are those shown in Fig. 6 together
with the 90° rotations of (a) and (b). In this and subsequent
figures, pixels that are left blank may be 1 or 0 or are “don’t
care” pixels.

| | l!‘Ill‘N'H‘

878 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992

x|x|x 0|x|x 110 0| x

0|10 yl1]x 01]1 1(1]x

ylyily yly|O x|x|x o x
@ (®) © @

Fig. 6. Final point conditions of [115].

x|x|x 01 1/0
1{0 1|0 0of1

01

() (®) ©

Fig. 7. Additional final point conditions [115].

ofo ofofo

0j1]1 1
1 1|1

(a) (b)

Fig. 8. Pixel deletion conditions in [4].

The difference between window (b) here and that in Fig.
2(b) implies that the present algorithm would produce im-
perfectly 8-connected skeletons, as is indeed the case. The
two-subcycle algorithm combines deletion of south and east
contour points in the first subcycle and the rest in the second.
For the second subcycle, the final point conditions are the
ones given above in Fig. 6 together with those shown in Fig.
7. Conditions (b) and (c) are added to ensure connectivity and
preserve diagonal lines; however, thin horizontal or vertical
lines are not preserved. The processing speed of this algorithm
was found to be comparable with that of [103], but the use
of only 3 x 3 windows here allows for easier implementation
on a cellular network.

Another algorithm using thinning windows is [4], where
the. masks for pixel deletion are those shown in Fig. 8
together with their 90° rotations. Each mask is applied in
parallel to P, and the masks are applied in the order (a),
(b), followed by their 90° rotations, and so on. Therefore,
this algorithm removes pixels from eight borders in the order
nw, w, etc. The asymmetric nature of mask (b) results from the
requirement that P should not vanish completely in the parallel
process. This algorithm was proved to operate correctly; it was
especially suitable for implementation on parallel processors
that have the ability to extract “1” and “0” elements having
a predetermined number of “1” or “0” elements in chosen
neighborhood positions, and it was implemented on a Clip
4 parallel processor [53]. Since not all deletable pixels were
removed, other masks were added to produce those of Fig. 9
and their rotations.

In addition, it was found [53] that superior results are
obtained when removal is restricted to pixels that do not
only satisfy the criteria so far but would have satisfied them
at the start of the current iteration. This ensures that just

ofo]e 0 ofofo ofo 0
1 111 1 1)1 of1]1
11 1 E 1 1
@ ®) © @ @©

Fig. 9. Pixel deletion condition in [53].

one layer of pixels is removed all around P and results in
a more predictable algorithm with fewer anomalies at the
corners where two layers of pixels may be removed otherwise.
The author calls this a border parallel operation, whereas
the original is border sequential. Implementation of a border
parallel algorithm on the Clip 4 processor does not involve
extra computation since the 1’s and 0’s are detected in separate
steps in any case; therefore, it is necessary only to test the
1’s in the pattern at the beginning of the iteration, whereas
the 0’s are tested in the pattern obtained so far. The longer
computation time required is the result of deleting fewer
pixels in each cycle. In the same paper, it is also shown
that the border parallel conditions of Fig. 9 are equivalent
to the four-subiteration border parallel deletion of contour
pixels with crossing number Xy (p) = 1. Fig. 10 shows the
results of using this crossing number to thin a pattern by the
border parallel and border sequential algorithms. Fig. 10(a)
shows the results after one iteration when the contour pixels
are deleted according to the sequence north, east, south, and
west. Typically, the border-sequential algorithm deletes more
pixels at the corners; as a result, the end pixel condition
may be encountered sooner with the preservation of these
pixels leading to more short (and possibly noisy) branches. For
this reason, the right end of the horizontal stroke is retained
by this algorithm in the final skeleton shown in Fig. 10(b),
thus illustrating the tradeoff that is sometimes involved when
different thinning algorithms are used.

By using look-up tables, a simulation of the border parallel
conditions of Fig. 9 has been implemented [112], [113], in
which mask (c) and its rotations are omitted and endpoint
conditions added. To prevent excessive erosion of two-pixel-
thick lines, additional information is used so that the current
pixel is retained if its preceding neighbor pixel has been
removed.

Two recent papers [118], [49] have implemented parallel
thinning using the crossing number X g (p) to examine pixels
for deletion in two subiterations. In [118], the (approximately)
4 x 4 window used is shown in Fig. 11. Pixels removed in
the first subcycle are a) deletable north contour pixels, and b)
west contour pixels that are deletable after the pixels in a) have
been removed. It is this latter requirement that produces more
consistent results while making it necessary to increase the
size of the neighborhood and the complexity of the algorithm.
In this subcycle, p is deleted iff

S1: Xu(p) < 2,

S2: (b(p) > 2) V [(b(p) = 2) A X5, zxxks1 = 0], and

$3: (z3 = 0) V [(z5s = 0) A 54 A 5], where

S4: z2 V Ig(y1 Vy2 Vys) VJays = L,and
S5: T4 Vys VZToys = 1.

LAM et al.: THINNING METHODOLOGIES

e, IS

TN T

RITT wane

Lk e . ..

AR, .. B

SRR .. .,

RIR * e ..

TR * JE ..,

RN ", Rk KN

JhERE, B Lowe R

RIITH * Lk N

R * TN N
LRRRRRR e, SRRARE *. ..
AERRRRRRRANARE AR R T
AERERNERENNRRNRN | ARRRRRRRRENRR RN
R L T LRRRRRARARONRAN

............ bl F O

[Ty Law

e, R

anh R

e, e

waw e

TN nw

wew x

AR RR RS R R B

..................

®
Fig. 10. Thinning by border parallel and border sequential algorithms of
[53]: (a) After one cycle; (b) final skeleton. The figures to the left in both
(a) and (b) show the border parallel (four cycles), and the figures to the right
show the border sequential (three cycles).

s | ¥,

N I e N R

x| P (x|%n

%5l |n

Fig. 11. Neighborhood of [118].

For the second subcycle, the conditions are S1, S2, and the
180° rotations of S3-SS5.

In [49], two such algorithms are implemented. For the first
one, the image is divided into two distinct subfields in a
checkerboard pattern, and each subiteration deletes pixels p in
a subfield iff p is a contour pixel, b(p) > 1, and Xy (p) = 1.
This procedure results in noise spurs and zigzagging vertical
or horizontal lines. The other algorithm is a modification of
[136] to thin to 8-connected skeletons and retain diagonal lines
and 2 x 2 squares. Under this scheme, p is deleted iff

Gl: Xu(p) =1

G2: 2 < min {n;(p),n2(p)} < 3, where

n1(p) = Yi_, Tak-1V T2k and nap(p) = Yi; Dok V Takta

represent the number of 4-adjacent pairs of pixels in N(p)

(AR R RN A

879

containing one or two black pixels, and
G3: (2 V23V Zg) Az1 = 0 in the first subiteration and its
180° rotation in the second.

Labeling schemes have also been suggested for use in par-
allel thinning. In [41], one-subcycle thinning is accomplished
by recoding the pattern pixels to incorporate connectivity
information from a 5 x 5 window into the coded pixels in
N(p). Two initial scans are used to recode the pixels into core,
interior, rim, and skeleton points (c, ¢,, and s, respectively).
The basic rule is to replace r pixels by b (background)
pixels if a horizontal or vertical irb sequence is present, with
exceptions made to preserve connectivity and end points. This
is similar to the “ideal” method for thinning proposed in
[40], where p is D perfect if it belongs to a horizontal or
vertical configuration ipb, where ¢ is an interior point, and
b is a background pixel. (Actually, D-perfect points satisfy
one of the two conditions for regular points in [11] and
[12]). An'I-perfect point is defined analogously in terms of
a diagonal alignment with the added condition that the two
pixels 4-adjacent to both p and b must both be white. This
paper suggests that parallel deletion of pixels that are simple
and . perfect (D or I perfect) would produce well-defined
pseudo skeletons that are invariant to translation and rotation.
Retention of endpoints is obviously achieved because they are
never perfect.

Since it is impossible to determine whether a neighbor of a
border point is an interior point if only 3 x 3 windows are used,
additional information is incorporated {125] from outside the
window by defining nonend points. If SC is the set of simple
contour points, and B = P — SC, then p € P is a nonend
point iff

T1: p is adjacent to a point in B,

T2: every neighbor of p in P is in B or adjacent to a point

in Bn N(p),

T3: the points in BN N(p) are connected in N(p), and

T4: b(p) > 2.

The operation that removes simple, nonend, contour points in
parallel is shown to preserve topology.

In order to extend the limitations imposed by 3 x 3 local
operations, hybrid schemes have also been proposed to com-
bine distance transforms with thinning. The use of distance
transforms provides more global information. It has also been
argued that since thinning operations can preserve connec-
tivity while distance transforms possess the reconstruction
capability, combining the two operations would be logical if
both properties are desired [125]). The suggested procedure
is that for each iteration, the set I of interior points of the
existing patterns P should be determined, and its expansion
E(I) is defined as E(I) = {q|lg € I or has a neighbor in
I}. Then, the set of local maxima (in convexity) can be
obtained as P — E(I) [9], and contour points can be deleted
unless they are local maxima, nonsimple, or nonend points
(defined above). The remaining contour points are added to
the skeletal set, and the process is repeated with I as the
existing pattern. It is also argued [63] that such a hybrid
scheme may be most efficient since a distance transform
can be used initially to remove the bulk of the exterior

| orem arnt

880 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992

0ojo}fo 00 0fo|0 ojo}o n

[e]e]2]e] o
1 1 1 1lofo] . n

-
-
-
-
-
<
=
-
=
o
-
=

(a) () ©
Fig. 12. Templates of [25]: (a) Thinning; (b) trimming; (c) restoring.

pixels in a fixed number of passes, and then, a peeling
algorithm can be used to thin the remaining image to unit
width.

The one-subiteration algorithms of [103], [54], [41], and
[125] have already been discussed, where all utilize infor-
mation from a larger than 3 x 3 neighborhood to maintain
connectedness. Other algorithms of this group are [25] and
[22]. In [25], eight thinning, two restoring, and eight trimming
templates are applied in parallel in one pass in which pixels
matching the 3 x 3 thinning or trimming, but not those of
the 1 x 4 or 4 x 1 restoring templates, are removed. These
templates are those of Fig. 12 and 90° rotations of (a) and
(b).

The thinning templates delete border and corner points and
the restoring templates retain 2-pixel-wide lines, whereas the
trimming templates reduce noise spurs at the obvious expense
of shortening branches. This algorithm is also implemented
[20] using only 4 x 4 thinning and restoring templates (by
filling in with don’t care pixels). Only two iterations are
used in different directions, after which postprocessing was
applied to obtain a medial line that is not usually one-pixel
wide.

In [22], a pseudo one-subcycle algorithm is implemented
that essentially uses information from a 5 x 5 window. Despite
a rather involved formulation employing many new terms that
will not be included here, a pixel p is basically a candidate
for deletion iff

Cl: Xy (p) = 1 (equivalent to LC(p) = Ty — 1(# 0)), and

C2: (a) the black pixels in N(p) are 4-connected (E(p) =

LC(p)), or

(b) p belongs to a two-pixel-wide diagonal line.

The conditions for C2(b) had been given in [33] and
modified in [21], and it is the latter scheme that is used here
and stated as Si(p) = 2 and L(p) = 1. If p satisfies the
conditions for deletion, then its 4-neighbors are checked for
possible deletion. If these are not deletable or connectivity
would not be changed, then p is removed. The information
is stored in look-up tables (as in [21]) for the checking
process. In addition, a specially designed thinning condition
can be added [23] to the algorithm to better preserve L-shaped
patterns by removing more pixels from a concave corner than
before. The condition is that p can be deleted if its four
corner neighbors contain one white pixel while the other three
have all black 8-neighbors. In [24], comparisons are made
among [54], [25], and {22] in terms of thinning conditions
and a connectivity-preserving function; The method in [22]
is considered to be superior because it has more complete
thinning conditions and a smaller ratio of cases guarded for

connectivity preservation (hence, fewer iterations would be
required).

For parallel algorithms, much of the attention in recent years
has been focused on processing speed, and this has led to
many comparisons' either in terms of computing time or the
number of iterations or subiterations used [118], [20], [49],
[24]. However, some comparisons of the number of iterations
may not be entirely valid [50]. A one-pass algorithm ([54], for
example) is usually achieved by means of a larger support than
3x 3, and this creates the need for computation of intermediate
results or edge information on neighboring pixels. For this
reason, a common framework is needed to define an “iteration”
so that parallel algorithms can be meaningfully compared.
The proposed scheme [50] assumes that in one iteration, each
element of a mesh computer can compute any logical function
of a 3 x 3 neighborhood, and the parallel speed of an algorithm
is measured by the number of such iterations needed. Using
this criterion of measurement, the parallel speed of [54] is not
an improvement over that of two-subiteration algorithms such
as [136].

In conclusion, it would appear that, as opposed to sequential
algorithms, much of the complexity of parallel algorithms
results from the need to preserve connectedness while using
parallel operations in a small local neighborhood. This is a
problem particular to the nature of parallel thinning, and it
has been addressed by using subiterations (and serializing the
procedure to some extent) or by enlarging the neighborhood to
be examined. In either case, intermediate results are actually
computed and used in some form in order to preserve more
global structures.

V. NONITERATIVE THINNING METHODS

In the preceding sections, we discussed algorithms that
produce a skeleton by examination and deletion of contour
pixels. In this section, the algorithms to be considered are
nonpixel based; they produce a certain median or center line

of the pattern directly in one pass without examining all-

the individual pixels. Since the algorithms that accomplish
this by medial axis or distance transforms are discussed in
a separate paper, we are mainly concerned here with methods
that determine center lines by line following or from run
length encoding. It has been argued that this is the way human
beings would perform thinning and that it is possible to retain
global features and maintain connectedness in the process
[15].

The simplest category of these algorithms determines the
midpoints of black intervals in scan lines and connects them
to form a skeleton. These methods have the advantage of
being computationally efficient, but they also have natural
disadvantages and would create noisy branches when the
strokes are nearly parallel to the scan line [87]. They are
valid in certain specialized applications where the scanning
direction can be approximately perpendicular to that of the
stroke. For example, in [75], the objects are rectangular with
only small undulations along two parallel and much longer
sides; therefore, a useful median line can.be obtained by
maintaining a constant scanning direction perpendicular to

LAM et al.: THINNING METHODOLOGIES

these sides. In other applications, the scanning directions are
variable by rotations of 90 [74] or 45° [81]. The scanning
in [60] is in both the z- and y-directions and the direc-
tion of smaller length (within certain constraints) would be
selected.

Some algorithms obtain approximations of skeletons by
connecting strokes having certain orientations. For example,
four pairs of window operations are used in four subcycles [76]
to test for and determine the presence of vertical, horizontal,
right, or left diagonal limbs in the pattern. At the same time,
the operators also locate turning points and end points by
a set of final point conditions, and these extracted points
are connected to form a line segment approximation of the
skeleton. In [108] and [110], the boundary pixels are first
labeled according to the above four local orientations. For
each boundary pixel, a search is made for the same kind
of label on the opposite side of the boundary (within a
maximum stroke width) in the direction perpendicular to
that given by the label. The midpoints of these pairs are
then connected to form a skeleton. These methods are not
appropriate for general applications since they are not robust,
especially for patterns with highly variable stroke directions
and thicknesses.

In [89], the vector form of a skeleton is obtained from
the run length coding of P. Consecutive horizontal black
intervals are grouped if they have approximately the same
width and are roughly collinear. Based on a width-versus-
height criterion, each such group is represented by either a
horizontal vector or a vector joining the midpoints of the first
and last intervals. Since this criterion alone is not sufficient,
certain complex rules for a “compound vectorization” are
devised to consider the relationship between groups to produce
the final result. Obviously, the skeletons cannot be expected to
preserve the geometric properties of the pattern, but this vector
representation is convenient for use in pattern recognition.
A recent thinning method [119] also produces a graph-like
representation of a pattern by dividing the pattern into small
units called meshes, on which partial recognition can be
performed, and then merging the meshes to form partial
graphs.

Another set of algorithms determine the center line of
P by tracking the two contours ‘of each curve simultane-
ously. In [31], the edge trackers move under the constraint
of maintaining minimum distance between them. In [105],
elongated ribbon-like simply connected objects without pro-
trusions are tracked by approximate trapezoids using two
pointers to follow the two contours of P. The midpoint of
the base of the next trapezoid is considered to be skeletal,
where the next base is either the side opposite the present
base or a diagonal, depending on whether the diagonals are
almost equal in length. This algorithm is extended [106] to
objects containing protrusions by generating skeletons of the
protrusions and backbone separately and then joining them
together.

The above algorithm considers a simply connected pattern P
to be a many-sided polygon, and this approach is also adopted
in [72] to construct a median line. For every vertex v of P,
its opposite line segment L is determined as the side of P

EREIRIE N [TAL LU

881

closest to v. Then, a “projecting” line L, is drawn from v to
L, where L, is the following:

1) The bisector of the interior angle # at v if § < 180°

2) the two normal lines of the vectors forming v, otherwise.
If L, intersects L within a threshold distance, its midpoint
is added to the median line. We note that the lines of 1) are
called pseudonormals in [19], where a discrete version of the
symmetric axis of an object is theoretically derived using them.

Lines of elongated objects are followed by rectangular
windows of variable size in [15], where the window can shrink
or grow in size according to the width of the line at the location
of the window. The skeleton is the unit width line connecting
the centers of successive windows. In [82], a combination of
thinning and stroke tracking is used on Chinese characters.
Contour pixels are first sequentially examined, and p is deleted
if

O1: N(p) has at least one interior pixel,

02: N(p) has, at most, three contour pixels, and

03: the contour pixels in N(p) U {p} are traced consecu-

tively.

When no more pixels can be deleted, the remaining pattern
is traced using a 2 x 2 square, and the skeleton is the loci of
these squares. The tracing is repeated if necessary.

Apart from these contour tracking methods, skeletal pixels
have also been determined by a heuristic approach [59].
The deletion of a pixel p is determined by the local pattern
density d(p) and the density d*(p) of d(p), where d(p) =
E?:l z; and d*(p) = Z?zl d(z;). p would be retained if
d(p) < t; and d*(p) < tp, where t; and tp are arith-
metically consistent thresholds that can be set in a learning
process.

Similar density functions based only on the 4-neighbors are
considered in [138], where the values of an addition matrix
are determined iteratively on black pixels p by

4
Aay(p) =) w2i-1,and

i=1

4
Amy(p) = Z Am-1)(z2i-1) if Ano1y(p) = 4(n - 1),
=1
when n > 1.

The number of directions (out of four) in which the pixel
has a maximum value (according to the final addition matrix)
is its comparative degree, and the matrix of these degrees
is thinned according to the sequential procedure of [137],
together with the added condition of having a small degree.
The addition matrix also contains information that allows for
an approximate reconstruction of the pattern.

Using a different approach, skeletons can also be obtained
from Fourier descriptors, at least for patterns that are not closed
or overlapping and that have constant width [90]. For such
patterns, the contour is traced to obtain a closed curve from
which Fourier descriptors can be extracted. Fourier descriptors
of the skeleton can then be determined, and the skeleton can be
constructed from a finite set of harmonics. However, it would
appear that highly mathematical methods can be used to obtain
skeletons of only rather idealized patterns.

| | H‘}“ LN

882 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992

VI. CONCLUSIONS

In the literature, there appears to be a general agreement
about the requirements that should be met by a thinning algo-
rithm. These include preservation of topological and geometric
properties, isotropy, reconstructibility, and high processing
speed. Whereas the nonpixel-based thinning methods of Sec-
tion V are efficient in terms of the number of operations
required, it would seem impossible for them to preserve more
detailed features of patterns since they are usually based on
locating certain critical points and connecting them. These
procedures are useful in applications where the detection
of such points would suffice, one possible example being
feature extraction in OCR. In general, however, the emphasis
should be placed on the development of parallel algorithms for
processing speed, especially when parallel image processing
structures become increasingly available.

Reconstructibility, or the ability to regenerate the original
pattern from the skeleton, is one objective measure of the
accuracy with which a skeleton is representing the pattern.
This criterion is generally satisfied by algorithms based on
medial axis and other distance transforms by virtue of the fact
that their skeletal pixels are also the centers of maximal blocks
with known radii, but this is usually not the case with thinning
algorithms. (Some exceptions are [86], [88], [138] and [77] to
a certain extent, all of which use labeling schemes to retain
the distances of skeletal pixels from the background).

Complete isotropy or invariance under rotation seems al-
most impossible to achieve in iterative algorithms. In sequen-
tial algorithms, the result depends on the order in which pixels
are examined, and in parallel algorithms that remove one or
two types of border points in each subiteration, the resulting
skeleton depends on the order of the subiterations. Examples of
nonisotropic results from these algorithms are shown in [8]. At
the same time, medial axis transforms are not invariant under
rotation due to a lack of algorithms based on true Euclidean
distance maps so that very different results can be obtained
from right-angled corners with one side parallel to an axis and
at 45° to it. The use of these transforms simply transfers the
problem from the thinning algorithm to the distance function,
and the result can be just as idiosyncratic [53].

Maintaining connectedness and topology in thinning appears
to have been resolved through various means. In sequential
algorithms, it is sufficient to examine 3 x 3 local neighborhoods
from the viewpoint of crossing number, for example. Parallel
algorithms resolve the problem by dividing each cycle into
subiterations or by considering a larger neighborhood in one
subiteration.

Preservation of geometric properties, however, appears to
be a more difficult problem. The main difficulty is that to
achieve simplicity of algorithm and/or processing hardware,
it is desirable to consider only small local neighborhoods,
but these neighborhoods are incapable of providing global,
structural information of the kind that is needed (for example)
to distinguish between noise spurs and genuine end points.
To prevent excessive erosion and creation of spurious end
points at the same time, various attempts have been made
to eliminate the end-point condition [18], make the condition

more broadly applicable [70], [50], or apply the condition
only at the later stages of thinning [118]. However, every
modification of this type involves a tradeoff when uniformly
applied, and additional information is really needed to make
finer distinctions between cases. For this reason, various
criteria using distance transforms have been introduced ([101],
[8], and [27], for example). Some such means would be needed
to propagate more global information to contour pixels, and it
may allow for faster deletion of pixels in the initial stages.

Ultimately, the particular geometric properties a skeleton
should preserve may be problem or application dependent.
Algorithms based on medial axis transforms that possess
the reconstruction capability would be well suited to appli-
cations such as data compression for storage and facsimile
transmission [29]. However, the skeletons obtained by these
methods are very sensitive to contour noise since branches
can originate to many convexities on the boundary, depending
on the distance transform used. Of course, this property is
what renders them capable of exactly recreating the original
pattern, but they would not be useful for pattern recognition
where patterns with a wide variety of insignificant local
contour differences can belong to the same class. For this latter
application, it is much more important for the pattern to be
represented by a collection of arcs lying along the center lines
of the main curves of the pattern, whereas small perturbations
of the contour should be ignored. At the same time, it is
recognized that the thinning of blob-like patterns may result
in skeletons that cannot preserve the original shape. In this
respect, two types of skeletons are actually obtained from the
different methods of thinning and medial axis transforms, and
the choice should depend on the application.

In conclusion, it should be mentioned that comparison of
the quality of skeletons remains a largely subjective, visual
decision since the concepts of (connected) medial line, noisy
branch, and excessive erosion have not been precisely defined.
In addition, it is not objectively or quantitatively clear as to
how a skeletal branch should accurately reflect the shapes
of the two contours it represents. Comparisons are inevitably
made when a new (or a modification of an existing) algorithm
is proposed, but it is often based on the inconclusive evidence
of one or two patterns. More general comparisons have been
made from a digital geometry point of view [120], and in
[92] and [93], comparisons have been made between skeletons
obtained from thinning algorithms and reference skeletons
prepared by human subjects. However, a more objective
framework for the measurement of skeleton quality remains
to be developed.

ACKNOWLEDGMENT

The authors are grateful to Associate Editor C. Dyer and
the three reviewers; their detailed comments have been very
helpful in the revision of this article.

REFERENCES

[1] W. H. Abdulla, A. O. M. Saleh, and A. H. Morad, “A preprocessing
algorithm for handwritten character recognition,” Pattern Recogn. Lett.,
vol. 7, no. 1, pp. 13-18, 1988.

LAM et al.: THINNING METHODOLOGIES

2]
13
4
[5

—

[6]
171
(8]
191

[10]

11}

[12]
[13]

[14]

[15]

[16]

[17]
[18]

9]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
31]
[32]
[33]

T. M. Alcorn and C. W. Hoggar, “Pre-processing of data for character
recognition,” Marconi Rev., vol. 32, pp. 61-81, 1969.

C. J. Ammann and A. G. Sartori-Angus, “Fast thinning algorithm for
binary images,” Image Vision Comput., vol. 3, no. 2, pp. 71-79, 1985.
C. Arcelli, L. Cordella, and S. Levialdi, “Parallel thinning of binary
pictures,” Electron. Lett., vol. 11, no. 7, pp. 148-149, 1975.

C. Arcelli and G. Sanniti di Baja, “On the sequential approach to medial
line transformation,” IEEE Trans. Syst. Man Cybern., vol. SMC-8, no.
2, pp. 139-144, 1978.

C. Arcelli, “A condition for digital points removal,” Signal Processing,
vol. 1, no. 4, pp. 283-285, 1979.

C. Arcelli and G. Sanniti di Baja, “Medial lines and figure analysis,” in
Proc. 5th Int. Conf. Pattern Recogn., 1980, pp. 1016-1018.

—, “A thinning algorithm based on prominence detection,” Pattern
Recogn., vol. 13, no. 3, pp. 225-235, 1981.

C. Arcelli, L. P. Cordella, and S. Levialdi, “From local maxima to
connected skeletons,” IEEE Trans. Patt. Anal. Machine Intell., vol.
PAMI-3, no. 2, pp. 134-143, 1981.

C. Arcelli, “Pattern thinning by contour tracing,” Comput. Graphics
Image Processing, vol. 17, pp. 130-144, 1981.

C. Arcelli and G. Sanniti di Baja, “Finding multiple pixels,” in Image
Analysis and Processing (V. Cantoni, S. Levialdi, and G. Musso, Eds.).
New York: Plenum, 1986, pp. 137-144.

, “On the simplicity of digital curves and contours,” in Proc. 8th
Int. Conf. Pait. Recogn. (Paris, France), 1986, pp. 283-285.

, “A contour characterization for multiply connected figures,”
Patt. Recogn. Lett., vol. 6, no. 4, pp. 245-249, 1987.

, “A one-pass two-operation process to detect the skeletal pixels
on the 4-distance transform,” IEEE Trans. Patt. Anal. Machine Intell.,
vol. 11, no. 4, pp. 411-414, 1989.

O. Baruch, “Line thinning by line following,” Patt. Recogn. Lett., vol.
8, no. 4, pp. 271-276, 1988.

H. Beffert and R. Shinghal, “Skeletonizing binary patterns on the
homogeneous multiprocessor,” Patt. Recogn. Artificial Intell., vol. 3,
no. 2, pp. 207-216, 1989.

A. Bel-Lan and L. Montoto, “A thinning transform for digital images,”
Signal Processing, vol. 3, no. 1, pp. 3747, 1981.

M. Beun, “A flexible method for automatic reading of handwritten
numerals,” Philips Tech. Rev., vol. 33, no. 5, pp. 89-101; 130-137,
1973.

F. L. Bookstein, “The line-skeleton,” Comput. Graphics Image Process-
ing, vol. 11, pp. 123-137, 1979.

N. G. Bourbakis, “A parallel-symmetric thinning algorithm,” Patt.
Recogn., vol. 22, no. 4, pp. 387-396, 1989.

Y. -S. Chen and W. -H. Hsu, “A modified fast parallel algorithm
for thinning digital patterns,” Pattern Recogn. Lett., vol. 7, no. 2, pp.
99--106, 1988.

, “A systematic approach for designing 2-subcycle and pseudo
1-subcycle parallel thinning algorithms,” Patt. Recogn., vol. 22, no. 3,
pp. 267-282, 1989.

, “A 1-subcycle parallel thinning algorithm for producing perfect
8-curves and obtaining isotropic skeleton of an L-shape pattern,” in
Proc. Int. Conf. Comput. Vision Patt. Recogn. (San Diego, CA), 1989,
pp. 208-215.

, “A comparison of some one-pass parallel thinnings,” Part.
Recogn. Lett., vol. 11, no. 1, pp. 3541, 1990.

R. T. Chin, H. -K. Wan, D. L. Stover, and R. D. Iverson, “A one-
pass thinning algorithm and its parallel implementation,” Comput. Vision
Graphics Image Processing., val. 40, pp. 3040, 1987.

Y. K. Chu and C. Y. Suen, “An alternative smoothing and stripping
algorithm for thinning digital binary patterns,” Signal Processing, vol.
11, no. 3, pp. 207-222, 1986.

N. Chuei, T. Y. Zhang, and C. Y. Suen, “New algorithms for thinning
binary images and Chinese characters,” Comput. Processing Chinese
Oriental Languages, vol. 2, no. 3, pp. 169-179, 1986.

C. H. Cox, P. Coueignoux, B. Blesser, and M. Eden, “Skeletons: A link
between theoretical and physical letter descriptions,” Pattern Recogn.,
vol. 15, no. 1, pp. 11-22, 1982.

E. R. Davies and A. P. N. Plummer, “A new method for the compression
of binary picture data,” in Proc. 5th Int. Conf. Patt. Recogn., 1980, pp.
1150-1152.

, “Thinning algorithms: A critique and a new methodology,”
Pattern Recogn., vol. 14, no. 1, pp. 53-63, 1981.

J. -D. Dessimoz, “Specialized edge-trackers for contour extraction and
line-thinning,” Signal Processing, vol. 2, no. 1, pp. 71-73, 1980.

E. S. Deutsch, “Preprocessing for character recognition,” in Proc. IEEE
NPL Conf. Patt. Recogn. (Teddington), 1968, pp. 179-190.

——, “Comments on a line thinning scheme,” Comput. J., vol. 12,
1969, p. 412.

[34]
(351

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
(48]

[49]

[50}

[51]

[52}

[531
[54]

[55]

[56]

(571

[58]
(591

[60]

[61]

[62]

[63]

1 [NN DN R

883

, “Toward isotropic image reduction,” in Proc. IFIP Congress
(Ljubljana, Yugoslavia), 1971, pp. 161-172.

, “Thinning algorithms on rectangular, hexagonal, and triangular
arrays,” Comm. ACM, vol. 15, no. 9, pp. 827-837, 1972.

A. R. Dill, M. D. Levine, and P. B. Noble, “Multiple resolution
skeletons,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-9, no.
4, pp. 495-504, 1987. :
G. P. Dinnen, “Programming pattern recognition,” in Proc. West. Joint
Comput. Conf. (New York), 1955, pp. 94-100.

R. O. Duda, P. E. Hart, and J. H. Munson, “Graphical-data-processing
research study and experimental investigation,” AD650926, pp. 28-30,
Mar. 1967.

U. Eckhardt, “A note on Rutovitz’ method for parallel thinning,” Patt.
Recogn. Lett., vol. 8, no. 1, pp. 35-38, 1988.

U. Eckhardt and G. Maderlechner, “Thinning algorithms for document

“processing systems,” in Proc. IAPR Workshop Comput. Vision: Spec.

Hardware Ind. Applications (Tokyo, Japan), 1988, pp. 169-172.

A. Favre and H. Keller, “Parallel syntactic thinning by recoding of
binary pictures,” Comput. Vision Graphics Image Processing, vol. 23,
pp. 99-112, 1983.

G. Feigin and N. Ben-Yosef, “Line thinning algorithm,” Proc. SPIE,
vol. 397, pp. 108-112, 1984.

G. E. Forsen, “Processing visual data with an automaton eye,” in
Pictorial Pattern Recognition (G. C. Cheng, R. S. Ledley, D. K.
Pollock, and A. Rosenfeld, Eds.). Washington DC: Thompson, 1968,
pp. 471-502.

J. G. Fraser, “Further comments on a line thinning scheme,” Comput.
J., vol. 13, pp. 221-222, 1970.

G. Gallus and P. W. Neurath, “Improved computer chromosome analysis
incorporating preprocessing and boundary analysis,” Phys. Med. Biol.,
vol. 15, no. 3, pp. 435-445, 1970.

R. C. Gonzalez and P. Wintz, “The skeleton of a region,” in Digital
Image Processing. Reading, MA: Addison-Wesley, 1987, pp. 398-402.
V. K. Govindan and A. P. Shivaprasad, “A pattern adaptive thinning
algorithm,” Pattern Recogn., vol. 20, no. 6, pp. 623-637, 1987.

F. C. A. Groen and N. J. Foster, “A fast algorithm for cellular logic
operations on sequential machines,” Pattern Recogn. Lett., vol. 2, no.
5, pp. 333-338, 1984.

Z. Guo and R. W. Hall, “Parallel thinning with two-subiteration algo-
rithms,” Comm. ACM, vol. 32, no. 3, pp. 359-373, 1989.

R. W. Hall, “Fast parallel thinning algorithms: Parallel speed and
connectivity preservation,” Comm. ACM, vol. 32, no. 1, pp. 124-131,
1989.

C. J. Hilditch, “An application of graph theory in pattern recognition,”
in Machine Intell. (B. Meltzer and D. Michie, Eds.). New York: Amer.
Elsevier, 1968, pp. 325-347, vol. 3.

., “Linear skeletons from square cupboards,” in Machine Intell.
(B. Meltzer and D. Michie, Eds.). New York: Amer. Elsevier,1969,
pp. 403420, vol. 4.

., “Comparison of thinning algorithms on a parallelprocessor,”
Image Vision Comput., vol. 1, no. 3, pp. 115-132, 1983.

C. M. Holt, A. Stewart, M. Clint, and R. H. Perrott, “An improved
parallel thinning algorithm,” Comm. ACM, vol. 30, no. 2, pp. 156-160,
1987.

C. Holt and A. Stewart, “A parallel thinning algorithm with fine grain
subtasking,” Parallel Comput., vol. 10, pp. 329-334, 1989.

S. H. Y. Hung and T. Kasvand, “Critical points on a perfectly 8- or 6-
connected thin binary line,” Pattern Recogn., vol. 16, no. 3, pp. 297-306,
1983.

M. 1. Izutsdkiver, “Algorithm for the initial processing of an ensemble
of symbols in the recognition process,” Auto. Remote Contr., vol. 35,
no. 8, pp. 1292-1298, 1974.

N. Izzo and W. Coles, “Blood-cell scanner identifies rare cells,” Elec-
tron., vol. 35, pp. 52-55, Apr. 1962.

R. N. Jones and M. C. Fairhurst, “Skeletonisation of binary patterns: A
heuristic approach,” Electron. Lett., vol. 14, no. 9, pp. 265-266, 1978.
K. Kedem and D. Keret, “A fast algorithm for skeletonizing lines by
midline technique,” in Proc. Int. Comput. Sci. Conf., (Hong Kong), 1988,
pp. 731-735.

R. A. Kirsch, L. Cahn, C. Ray, and G. J. Urban, “Experiments inpro-
cessing pictorial information with a digital computer,” in Proc. East.
Joint Comput. Conf. (New York), 1957, pp. 221-229.

T. Y. Kong and A. Rosenfeld, “Digital topology: Introduction and sur-
vey,” Comput. Vision Graphics Image Processing, vol. 48, pp. 357-393,
1989.

J. T. Kuehn, J. A. Fessler, and H. I. Siegel, “Parallel image thinning
and vectorization on PASM,” in Proc. Int. Conf. Comput. Vision Patt.
Recogn., 1985, pp. 368-374.

884

[64]
[65]
[66]

[67]

[68]

[69]

[70]

(7]

[72)

(73]

[74]

[75}

[76]

(77

[78]

179]

[80]

(81]

[82]

[83]
[84]
[85]
[86]
[87]
[88]
[89]

[90]

[91]

[92]

[93]

(%4

| o

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 9, SEPTEMBER 1992

P. C. K. Kwok, “A thinning algorithm by contour generation,” Comm.
ACM, vol. 31, no. 11, pp. 13141324, 1988.

, “Customising thinning algorithms,” in Proc. IEEE Int. Conf.
Image Processing Applications, 1989, pp. 633—637.

, “Thinning in a distributed environment,” in Proc. 10th Int. Conf.
Patt. Recogn. (Atlantic City, NJ), 1990, pp. 694-699.

L. Lam and C. Y. Suen, “Structural classification and relaxation match-
ing of totally unconstrained handwritten Zip-code numbers,” Patt.
Recogn., vol. 21, no. 1, pp. 19-31, 1988.

C. Lantuejoul, “Skeletonization in quantitative metallography,” in Issues
in Digital Image Processing (R. M. Haralick and J. C. Simon, Eds.).
Amsterdam: Sijthoff and Noordoff, 1980, pp. 107-135.

Y. Le Cun et al., “Handwritten digit recognition: Applications of neural
network chips and automatic learning,” IEEE Commun. Mag., pp. 4146,
Nov. 1989.

P. S. P. Wang, “An improved fast parallel thinning algorithm for
digital patterns,” in Proc. Int. Conf. Comput. Vision Patt. Recogn.(San
Francisco), 1985, pp. 364-367.

, “A comment on a fast parallel algorithm for thinning digital
patterns,” Comm. ACM, vol. 29, no. 3, pp. 239-242, 1986.

M. P. Martinez-Perez, J. Jimenez, and J. L. Navalon, “A thinning algo-
rithm based on contours,” Comput. Vision Graphics Image Processing,
vol. 38, pp. 186-201, 1987.

B. H. McCormick, “The Ilfinois pattern recognition computer—Illiac
II1,” IEEE Trans. Electron. Comput., vol. EC-12, no. 6, pp. 791-813,
1963.

B. Moayer and K. S. Fu, “A syntactic approach to fingerprint pattern
recognition,” Pattern Recogn., vol. 7, pp. 1-23, 1975.

J. L. Mundy and R. E. Joynson, “Automatic visual inspection using
syntactic analysis,” in Proc. Int. Conf. Patt. Recogn. Image Processing,
1977, pp. 144-147.

I. S. N. Murthy and K. J. Udupa, “A search algorithm for skeletonization
of thick patterns,” Comput. Graphics Image Processing, vol. 3, pp.
247-259, 1974.

N. J. Naccache and R. Shinghal, “STPA:" A proposed algorithm for
thinning binary patterns,” IEEE Trans. Syst. Man Cybern., vol. SMC-14,
no. 3, pp. 409418, 1984.

, “An investigation into the skeletonization approach of Hilditch,”
Pattern Recogn., vol. 17, no. 3, pp. 279-284, 1984.

, “In response to 'A comment on an investigation into the
skeletonization approach to Hilditch,”” Patt. Recogn., vol. 19, no. 2,
p. 111, 1986.

A. Nakayama, F. Kimura, Y. Yoshida, and T. Fukumura, “An efficient
thinning algorithm for large scale images based upon pipeline structure,”
in Proc. 7th Int. Conf. Patt. Recogn. (Montreal), 1984, pp. 1184-1187.
T. V. Nguyen and J. Sklansky, “A fast skeleton-finder for coronary
arteries,” in Proc. 8th Int. Conf. Patt. Recogn. (Paris, France), 1986, pp.
481-483.

H. Ogawa and K. Taniguchi, “Thinning and stroke segmentation for
handwritten Chinese character recognition,” Patt Recogn., vol. 15, no.
4, pp. 299-308, 1982.

J. F. O’Callaghan and J. Loveday, “Quantitative measurement of soil
cracking patterns,” Patt. Recogn., vol. 5, pp. 83-98, 1973.

L. O’Gorman, “k x k thinning,” Comput. Vision Graphics Image
Processing, vol. 51, pp. 195-215, 1990.

T. Pavlidis, “A thinning algorithm for discrete binary images,” Comput.
Graphics Image Processing, vol. 13, pp. 142-157, 1980.

, “A flexible parallel thinning algorithm,” in Proc. Int. Conf. Patt.
Recog. Image Processing (Dallas, TX), 1981, pp. 162-167.

, Algorithms for Graphics and Image Processing. Rockville,
MD: Comput. Sci., 1982, pp. 195-214.

, “An asynchronous thinning algorithm,” Comput. Graphics Im-
age Processing, vol. 20, pp. 133-157, 1982.

, “A vectorizer and feature extractor for document recognition,”
Comput. Vision Graphics Image Processing, vol. 35, pp. 111-127, 1986.
E. Persoon and K. S. Fu, “Shape discrimination using Fourier descrip-
tors,” IEEE Trans. Syst., Man Cybern., vol. SMC-7, no. 3, pp. 170-179,
1977.

1. Piper, “Efficient implementation of skeletonisation using interval
coding,” Patt. Recogn. Lett., vol. 3, no. 6, pp. 389-397, 1985.

R. Plamondon and C. Y. Suen, “On the definition of reference skeletons
for comparing thinning algorithms,” in Proc. Vision Interface 1988
(Edmonton, Canada), 1988, pp. 70-75.

, “Thinning of digitized characters from subjective experiments:
A proposal for a systematic evaluation protocol of algorithms,” in
Computer Vision and Shape Recognition (A. Krzyzak, T. Kasvand, and
C. Y. Suen, Eds.). Singapore: World Scientific, 1989, pp. 261-272.
K. Preston, “The CELLSCAN system—A leucocyte pattern analyzer,”
in Proc. West. Joint Comput. Conf. (Los Angeles, CA), 1961, pp.

1951

[96]

(971

[98]
[991
[100]
[101]
[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111].

[112]

[113]
[114]
[115]
[116}
[117]

[118]

[119]

[120]

[121

[122]

[123]

[124]

173-183.

K. Preston, M. J. B. Duff, S. Levialdi, P. E. Norgren, and J. -I. Toriwaki,
“Basics of cellular logic with some applications in medical image
processing,” Proc. IEEE, vol. 67, no. 5, pp. 826-857, 1979.

M. C. Rahier and P. G. A. Jespers, “Dedicated LSI for a microprocessor
controlled hand carried OCR system,” IEEE J. Solid-State Circuits, vol.
SC-15, no. 1, pp. 14-24, 1980.

S. Riazanoff, B. Cervelle, and J. Chorowicz, “Parametrisable skele-
tonization of binary and multi-level images,” Patt. Recogn. Lett., vol.
11, no. 1, pp. 25-33, 1990.

A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” J. ACM, vol. 13, no. 4, pp. 471-494, 1966.

A. Rosenfeld, “Connectivity in digital pictures,” J. ACM, vol. 17, no.
1, pp. 146-160, 1970.

____, “A characterization of parallel thinning algorithms,” Inform.
Contr., vol. 29, no. 3, pp. 286-291, 1975.

A. Rosenfeld and L. S. Davis, “A note on thinning,” IEEE Trans. Syst.
Man Cybern., vol. 25, pp. 226-228, 1976.

A. Rosenfeld and A. C. Kak, Digital Picture Processing (2nd ed.).
York: Academic, 1982, vol. II, ch. 11.

D. Rutovitz, “Pattern recognition,” J. Roy. Stat. Soc., vol. 129, Series
A, pp. 504-530, 1966.

P. Saraga and D. J. Woollons, “The design of operators for pattern
processing,” in Proc. IEEE NPL Conf. Patt. Recogn. (Teddington), 1968,
pp. 106-116.

B. Shapiro, J. Pisa, and J. Sklansky, “Skeletons from sequential bound-
ary data,” in Proc. Int. Conf. Patt. Recog. Image Processing (Chicago,
IL), 1979, pp. 265-270.

, “Skeleton generation from ..y boundary sequences,” Comput.
Graphics Image Processing, vol. 15, pp. 136153, 1981.

H. Sherman, “A quasitopological method for the recognition of line
patterns.” in Proc. Int. Conf. on Inform. Processing (Paris, France), 1959,
pp. 232-238.

R. M. K. Sinha, “Primitive recognition and skeletonization via labeling,”
in Proc. Int. Conf. Syst. Man Cybern. (Halifax, Canada), 1984, pp.
272-279.

R. M. K. Sinha and C. J. Ammann, “Comments on fast thinning
algorithm for binary images,” Image Vision Comput., vol. 4, no. 1, pp.
57-58, 1986.

R. M. K. Sinha, “A width-independent algorithm for character skeleton
estimation,” Comput. Vision Graphics Image Processing, vol. 40, pp.
388-397, 1987.

R. W. Smith, “Computer processing of line images: A survey,” Patt.
Recogn., vol. 20, no. 1, pp. 7-15, 1987. '

M. Del Sordo and T. Kasvand, “A near-neighbor processor for line
thinning,” in Proc. Int. Conf. Acoust. Speech Signal Processing, 1985,
pp. 1523-1525.

, “Neighborhood look-up tables for skeletonization,” in Proc. 4th
Scand. Conf. Image Anal. (Trondheim, Norway), 1985, pp. 663-670.

J. H. Sossa, “An improved parallel algorithm for thinning digital
patterns,” Patt. Recogn. Lett., vol. 10, no. 2, pp. 77-80, 1989.

R. Stefanelli and A. Rosenfeld, “Some parallel thinning algorithms for
digital pictures,” J. ACM, vol. 18, no. 2, pp. 255-264, 1971.

R. Stefanelli, “A comment on an investigation into the skeletonization
approach of Hilditch,” Patt. Recogn., vol. 19, no. 1, pp. 13-14, 1986.
C. Y. Suen, M. Berthold, and S. Mori, “Automatic recognition of
handprinted characters,” Proc. IEEE, vol. 68, no. 4, pp. 469487, 1980.
S. Suzuki and K. Abe, “Binary picture thinning by an iterative parallel
two-subcycle operation,” Patt. Recogn., vol. 10, no. 3, pp. 297-307,
1987.

T. Suzuki and S. Mori, “A thinning method based on cell structure,” in
Proc. Int. Workshop Frontiers Handwriting Recogn. (Montreal, Canada),
1990, pp. 39-52.

H. Tamura, “A comparison of line thinning algorithms from a digital
geometry viewpoint,” in Proc. 4th Int. Conf. Patt. Recogn. (Kyoto,
Japan), 1978, pp. 715-719.

C. C. Tappert, C. Y. Suen, and T. Wakahara, “The state of the art in on-
line handwriting recognition,” JEEE Trans. Patt. Anal. Machine Intell.,
vol. 12, no. 8, pp. 787-808, 1990.

J. -I. Toriwaki and S. Yokoi, “Distance transformation and skeletons of
digitized pictures with applications,” in Progress in Pattern Recognition
(L. N. Kanal and A. Rosenfeld, Eds.). New York: North-Holland, 1981,
pp. 189-264.

E. E. Triendl, “Skeletonization of noisy hand-drawn symbols using
parallel operations,” Pait. Recogn., vol. 2, pp. 215-226, 1970.

Y. F. Tsao and K. S. Fu, “Parallel thinning operations for digital binary
images,” in Proc. Int. Conf. Patt. Recog. Image Processing (Dallas, TX),
1981, pp. 150-155.

New

LAM et al.: THINNING METHODOLOGIES

[125] , “A general scheme for constructing skeleton models,” Inform.
Sci., vol. 27, no. 1, pp. 53-87, 1982.

[126] L. J. Vliet and B. J. H. Verwer, “A contour processing method for fast
neighborhood operations,” Patt. Recogn. Lett., vol. 7, no. 1, pp. 27-36,
1988.

[127] A. M. Vossepoel, J. P. Buys, and G. Koelewijn, “Skeletons from chain-
coded contours,” in Proc. 10th Int. Conf. Patt. Recogn. (Atlantic City),
1990, pp. 70-73.

[128] P. S. P. Wang, L.-W. Hui, and T. Fleming, “Further improved fast
parallel thinning algorithm for digital patterns,” in Computer Vision,
Image Processing and Communications—Systems and Applications (P.
S. P. Wang, Ed.). Singapore: World Scientific, 1986, pp. 37-40.

[129] P. S. P. Wang and Y. Y. Zhang, “A fast serial and parallel thinning

algorithm,” in Proc. Eighth Euro. Meeting Cybern. Syst. Res. (Vienna,

Austria), 1986, pp. 909-915.)

, “A fast and flexible thinning algorithm,” JEEE Trans. Comput., vol.

38, no. 5, pp. 741-745, 1989.

[131] Y. Xia, “A new thinning algorithm for binary images,” in Proc. 8th Int.
Conf. Patt. Recogn. (Paris, France), 1986, pp. 995-997.

[132] W. Xu and C. Wang, “CGT: A fast thinning algorithm implemented on
a sequential computer,” IEEE Trans. Syst. Man Cybern., vol. SMC-17,
no. 5, pp. 847-851, 1987.

[133] Q. -Z. Ye and P. E. Danielsson, “Inspection of printed circuit boards
by connectivity preserving shrinking,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 10, no. S, pp. 737-742, 1988.

[134] S. Yokoi, J. -I. Toriwaki, and T. Fukumura, “Topological properties
in digitized binary pictures,” Syst. Comput. Contr., vol. 4, no. 6, pp.
32-39, 1973.

, “An analysis of topological properties of digitized binary pic-
tures using local features,” Comput. Graphics Image Processing, vol. 4,
pp. 63-73, 1975.

[136] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning
digital patterns,” Comm. ACM, vol. 27, no. 3, pp. 236-239, 1984.

[137]) Y. Y. Zhang and P. S. P. Wang, “A modified parallel thinning algo-
rithm,” in Proc. 9th Int. Conf. Patt. Recogn. (Rome, Italy), 1988, pp.
1023-1025.

, “A maximum algorithm for thinning digital patterns,” in Proc.

9th Int. Conf. Patt. Recogn. (Rome, Italy), 1988, pp. 942-944.

[130]

[135]

[138]

Louisa Lam received the B. A. degree from Welles-
ley College, Wellesley, MA, where she was elected
to Phi Beta Kappa. She received the Ph.D. degree
in mathematics from the University of Toronto,
Toronto, Canada.

She is currently teaching mathematics at Vanier
College and conducting research at Concordia Uni-
versity, Montreal, Canada. Her research interests
include character recognition and skeletonization
algorithms.

! ' | [AR L 1 RO

885

Seong-Whan Lee (M’91) was born in Beolgyo,
Korea, in 1962. He received the B. S. degree in
computer science and statistics from Seoul National
University, Seoul, Korea, in 1984 and the M. S. and
Ph.D. degrees in computer science from the Korea
Advanced Institute of Science and Technology in
1986 and 1989, respectively.

In 1987, he worked as a visiting researcher at
the Pattern Recognition Division, Delft University
of Technology, Delft, the Netherlands. He was a
visiting scientist at the Centre for Pattern Recog-
nition and Machine Intelligence, Concordia University, Montreal, Canada,
during the winter of 1989 and the summer of 1990. Since 1989, he has been
an Assistant Professor in the Department of Computer Science, Chungbuk
National University, Chungbuk, Korea. His research interests include pattern
recognition, computer graphics, and intelligent man-machine interfaces.

Dr. Lee was awarded a best paper prize from the Korea Information Science
Society in 1986. He is a member of the governing board of the Special Interest
Group on Artificial Intelligence of Korea. He is also a member of the Korea
Information Science Society, the Pattern Recognition Society, the Association
for Computing Machinery, and the IEEE Computer Society.

Ching Y. Suen (F’86) received the M.Sc. (Eng.)
degree from the University of Hong Kong and
the Ph.D. degree from the University of British
Columbia, Vancouver, Canada.

In 1972, he joined the Department of Computer
Science at Concordia University, Montreal, Canada,
where he became Professor in 1979 and served as
Chairman from 1980 to 1984. Presently, he is the
Director of the new Center for Pattern Recognition
and Machine Intelligence (CENPARMI) at Concor-
dia University. During the past 15 years, he has been
appointed to visiting positions at several institutions in different countries.
He is the author/editor of several books including Computer Vision and
Shape Recognition, Frontiers in Handwriting Recognition, and Computational
Analysis of Mandarin and Chinese. His latest book is entitled Operational
Expert System Applications in Canada, which is published by Pergamon
Press. He is the author of many papers, and his current interests include

~ pattern recognition and machine intelligence, expert systems, optical character

recognition and document processing, and computational linguistics.

An active member of several professional societies, Dr. Suen is an As-
sociate Editor of several journals related to his areas of interest. He is the
Past President of the Canadian Image Processing and Pattern Recognition
Society, Governor of the International Association for Pattern Recognition,
and President of the Chinese Language Computer Society.

