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Fig. 5. A double-loop network in triple-node failure in Case III) where n =

2p and the distance between a faulty node pair is s.

nodes 0 and p + 1 are assumed to be faulty. Then we have

p-2 -3
Ei=Y, (n=2(i+1)+20)+ Y, (n—-2(j+ D) +2j)+2(n-3)

i=1 j=1
=n2-5n+4.

Let E, denote the number of communicable node pairs in a double-
node failure with Dy = s — 1orn — s + 1. Then we get E, = n?/2
— 2n + 1 from Table I. Let E denote the total number of
communicable node pairs for all triple-node failures where two of
three are fixed at nodes 0 and p + 1. Then we have

E=(n-3)E,—E,

=(n3-9n%+24n—-14)/2.

There exist two types of networks in Case III): there exists some
pair with D; = s or none. We first investigate the case of Dy = s.
Fig. 5 shows an example of these networks where faulty nodes are 0,
s, and i (or j). In order to make i (or j) such that the distance between
any two faulty nodes isnots + lorn — s — 1, weseti(orj) # h,
k, I, p. Therefore, the number of triple-node failures that two faulty
nodes are fixed at nodes 0 and sis n — 6. When only two nodes 0 and
s are assumed to be faulty, the number of communicable node pairs
(i, *yor(j, *)is, respectively, n — (2i + 3)orn — (2j + 3). And
then the number of communicable node pairs (-, i) or (-, j) is,
respectively, 2/ + 1 or 2j + 1. Let F) denote the total number of
communicable node pairs for all / and j. Then we have

p-3
Fi=23 (n-Qi+3)+Q2i+1)

i=1
=n?-8n+12.

We can see that F, (the number of communicable node pairs in a
double-node failure with Dy = s) is n2/2 — 2n + 2 from Table L.
Let F denote the total number of communicable node pairs in a triple-
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Fig. 6. A double-loop network in triple-node failure where the distance
between any faulty node pair is not s.

node failure when two faulty nodes are fixed at nodes O and s. Then
we get the following expression:

F = (the number of communicable node pairs when only 0 and s
are faulty)

— (the number of communicable node pairs whose counterpart
is node i or j where i or j is the third faulty node candidate)
=(n-6F - Ff
= n3/2 — 6n® + 22n — 24.

The network shown in Fig. 6 is such that the distance between any
faulty node pair is not s. In this case, we can easily obtain the number
of communicable node pairs in a double-node failure, i.e., 2,_3C,.

We can calculate the numbers of communicable node pairs in other
different cases in the similar manner as mentioned above.
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A Fast and Flexible Thinning Algorithm
P. S. P. WANG AND Y. Y. ZHANG

Abstract—A fast serial and parallel algorithm for thinning digital
patterns is pr ted. The processing speed is faster than the algorithms in
the literature [1]-{3] in that it reads pixels along the edge of the input
pattern rather than all pixels in each iteration. Using this algorithm, an
experiment is conducted and the patterns such as “X,” “H,” “A,”
“moving body,”” and ‘leaf”’ are tested. The results show that this
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Fig. 1.

algorithm is faster, structure-preserving, and more flexible in that it can
be done either sequentially or in parallel.

Index Terms—Image processing, parallel thinning, pattern recognition,
skeleton.

I. INTRODUCTION

In dealing with image processing and pattern recognition prob-
lems, a digitized binary pattern is normally defined by a matrix,
where each element, called a pixel, is either 1 (dark point) or O (white
point). ““Thinning’’ is a process that deletes the dark points and
transforms the pattern into a ‘‘thin”’ line drawing known as a
skeleton. The thinned pattern must preserve the basic structure of the
original pattern and the connectedness. ‘‘Thinning’’ plays an
important role in digital image processing and pattern recognition,
since the outcome of thinning can largely determine the effectiveness
and efficiency of extracting the distinctive features from the patterns
{121, [13]).

A variety of thinning algorithms [1]-[11], [14], [15], such as
serial, parallel, and maximum methods, have been proposed for
thinning digital patterns. In a serial method, the value of a pixel at the
nth iteration depends on a set of pixels for some of which the result of
nth iteration is already known. In parallel processing, the value of a
pixel at the nth iteration depends on the values of the pixel and its
neighbors at the (n — 1)th iteration. Thus, all the pixels of the digital
pattern can be thinned simultaneously.

In the literature [4], a fast parallel algorithm for thinning digital
patterns was proposed. This algorithm uses a ‘‘parallel’” approach so
that the thinning process is very good with respect to both parallelism
and connectivity. However, there are some disadvantages, such as
erosion of diagonal patterns. In the literature [2], the pixel is flagged
when it should be deleted at an iteration. So it is not a parallel
thinning algorithm. In this paper, we propose a new serial and
parallel algorithm which is faster and structure-preserving.

II. BASIC DEFINITIONS AND NOTATIONS

In order to describe the algorithm in this paper, we give some
definitions as follows.

Definition 1: The neighbors of a pixel, p:q[i, j], are identified by
the eight directions, g[i — 1, /), q[i — 1,/ + 11, q[i,j + 11, qli
+ 1,7+ 11,qli + 1,j1,qli + 1,/ — 1 qli,j - 1], qli = 1,/ -
1], i.e. p[k], (k = 0 --- 8, p[8] = plO]), shown in Fig. 1.

Definition 2: The contour points of a digital pattern are defined as
those pixels for which at least one neighbor is white. In Fig. 2, *‘a,”
“p,”” -+, “‘s’’ are contour points, ‘‘£’’ is not contour point.

Definition 3: The contour loop is a set of contour points which are
connected into a loop. We use L(1), - - -, L(m) to label the different
contour loops of a pattern, where m is the number of contour loops.
For example, the letter *‘Y’” (Fig. 2) is one contour loop pattern (m
= 1). The letter ‘‘A’’ (Appendix c) is a two-contour loop pattern (m
2).

Definition 4: When a contour point  at a time is processed, the
next processing contour point v is called a successor contour point of
u and u is called a previous contour point of v. In Fig. 2, if the pixel
“‘b’’ is processed, then the point ‘"’ is the previous contour point of
‘b’ and ‘“c”’ is the successor contour point of “‘b.”’

Definition 5: Let p be the processing contour point. Let x be the
previous contour point of p, and let z be the successor contour point
of p. Then s will be called successor function if z = s(x, p) is a
function from x according to clockwise order around the neighbors of
p to meet the first dark point z. In Fig. 2, if the current processing

Pixel and its neighbors.

n o
= o
o
(23

N o
w Q.

ptl
onm

Fig. 2. The digit pattern *‘Y.”’

pixel is ““7°” and the previous contour point of ““7’" is “‘6,”’ then z =
s(*7,” *°6”’) is “‘j.”" If the previous contour point of ““7" is “‘r,”’
then z is *‘3.”’

III. SERIAL THINNING ALGORITHM

In serial processing, the result of thinning a point at the nth
iteration depends on a set of points for some of which the result of the
nth iteration is already known. Naccache and Shinghal gave in 1984 a
serial thinning algorithm [2]. In this paper, we also give a serial
thinning algorithm which is faster than algorithm [2]. Our algorithm
stores the original picture in a matrix Q. All processes in the
following algorithm are operated on matrix Q. To describe this
algorithm, several specific functions need to be provided.

1) Initial: a function that computes: a) the contour loop number m,
b) the first contour point FIRST[K], and its previous point,
PREV[k], for each contour loop L[], (k = 1,2, - -+, m), c) set the
initial value ‘1’ to loop decision variable #[k] (h[k] = 1 means
that the contour loop points need to be thinned).

2) loop-end-test (k): a function that tests whether the kth contour
loop is terminated.

3) successor (x, p): a function that computes the successor point
from previous point x according to clockwise order around the
neighbors of p to meet the first dark point.

4) deletion (Q, p): a function that deletes a point p in Q if it
satisfies following two conditions: a) 1 < B(p) < 7,b) A(p) =1
orc(p) = 1.

Where B( p) is the number of neighbors of p which are not equal
to zero. A(p) is the number of white-to-dark transitions when the
neighbors are taking a clockwise walk around p (i.e., along the
neighbors of pixel p).

1 plk—11+plkl+plk+11+plk+4]1=0

c(p)= and plk+3]=1and plk+5]=1 (k=1 or 3)

0 otherwise.

Function: serial thinning

Arguments:
initial—a function that counts m FIRST[k], PREV[k], and sets 1
to h[k]land g(k = 1,2, -+, m).
loop-end-test (k)—a function that returns ¢ only endpoint of kth
contour loop.
successor (x, p)—a function that returns the successor point.
deletion (Q, p)—a function that deletes p in Q.
Algorithm:
initial;
repeat
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Fig. 3. A slanting pattern and its thinning.

TABLE 1
THE COMPARISON OF RUN TIME (IN SECONDS) CONSUMED BY
DIFFERENT SERIAL THINNING ALGORITHMS

| | Pattern |
] Algorithm | I
l I (O | HAN | "body" l "leaf" |
| | -1
| Our Algorithm | 7.80 | 8.57 | 10.60 | 13.68 |
I | -
| Naccache & Shinghal | 12.91 | 11.25 | 17.03 | 32.57 |

for k := 1to mdo if h[k] = 1 then

begin
p = FIRST[k]; x : = PREV[Kk]; h{k] := O;
repeat
Z 1= successor (x, p); x := p;

ifl < B(p) < 7and (A(p) = lorc(p) =1)
then begin deletion (Q, p); h[k] := 1 end;
pi=2z
until loop-end-test (k);
end;
until Afl] +---+ A[m] = 0.

IV. PARALLEL THINNING ALGORITHM

In parallel processing, the value of a pixel at the nth iteration
depends on the values of the pixel and its neighbors at the (n — 1)th
iteration.

In paper [3], Zhang and Suen proposed a parallel thinning
algorithm ZS, which yields good results with respect to both
connectivity and contour noise immunity, but algorithm ZS some-
times no longer preserves the structure of the originat pattern. In Fig.
3(a) is the original pattern. Fig. 3(b) is the skeleton using algorithm
ZS and Fig. 3(c) is the skeleton using our parallel thinning algorithm.

Our parallel thinning algorithm can preserve the structure of the
original picture and the speed is faster than that of Algorithm ZS. We
store the picture in matrix Q and Q1. The algorithm is shown as
follows.

Function: parallel thinning

Arguments:
initial—a function that computes m, FIRST[k], PREV[k], and
sets 1 to h[k] (kK = 1,2, -++, m).
loop-end-test (k)—a function that returns ¢ only endpoint of kth
contour loop.
successor (x, p)—a function that returns the successor point.
deletion (Q, p)—a function that deletes p in matrix Q if p satisfies the
following condition.
1 < B(p) < 7and (A(p) = torc(p) = 1)and (pI2] +
pl4] * pl0] * pl6] = O)
or

1 < B(p) < 7and (A(p) = lorc(p) = 1) and (p[0] +
pl6] = p[2] * p[4] = 0)

Algorithm:
initial; g : = 1;
repeat
Q:=Ql;ifg=1theng:=0elseg:=1;
fork := 1tomdoif h[k] = 1 then

begin p : = FIRST{k]; x := PREV[k]; h[k] := O;
repeat
Z 1= successor (X, p); X := p;
case g of
0:if 1l < B(p) < 7Tand (A(p) = lorc(p) = 1)
ando(p[2] + pl4D) * p[O] * pl6]

then begin deletion (_Q], p); hlk] := lend;
1:if1 < B(p) < 7and (A(p) = lorc(p) = 1)
and (pl0] + pl6)) * pI2] * p[4]
=0

then begin deletion (Q1, p); h[k] := 1 end;
end case;
D=3
until loop-end-test (k)
end
until A[1) +---+ h[m] = 0.

V. THE RESULT OF EXPERIMENT

To compare the performance of our algorithms to Algorithms
NS[2], ZS[3}, and SV[4], all algorithms were coded in Pascal and run
on an IBM personal computer XT. These algorithms were tested on
digital patterns ‘‘H,”’ “‘A,”” “‘body,’’ and ‘‘leaf.’” The units of time
taken by these algorithms are shown in Table I (serial thinning
algorithms) and in Table II (parallel thinning algorithms).

VI. DISCUSSION AND CONCLUSIONS

We have just proposed the thinning algorithms which work along
the contours of patterns. Comparing our algorithms to a couple of
algorithms from the literature [2]-[4], we find the following.

1) They are faster, in that they do not require each pixel of the
pattern to be tested except contours. As we know, ‘‘thinning’’ is a
process that tests a dark pixel to see if it satisfies thinning conditions.
If it does, delete this pixel, otherwise leave it as it is. Therefore,
thinning spends most of the time on testing thinning conditions. It is
faster since our proposed algorithms only need to test contours.

For example, a 556-pixel digitized character ‘“H’’ shown in Fig. 4
adopted from [3]. The points marked by **.”” have been removed.
Fig. 4(a) shows the result after the first iteration. The final result is
shown in Fig. 4(b). In the first iteration, Algorithm ZS needs to test
556 pixels. In order to obtain the final result, Fig. 4(b), Algorithm ZS
needs to test total 2552 pixels (556 + 481 + 409 + 339 + 271 +
205 + 141 + 96 + 54). However, our new algorithms only need to
test 146 pixels at the first iteration and the total tested pixels is 1170
(146 + 142 + 138 + 134 + 130 + 126 + 122 + 118 + 114).
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TABLE 1l
THE COMPARISON OF RUN TIME (IN SECONDS) CONSUMED BY
DIFFERENT PARALLEL THINNING ALGORITHMS

| | Pattern |
| Algorithm | |
l | 5l | AN ] "body" l "Jeaf" |
[ I |
| Our Algorithm | 9.56 | 10.43 | 14.67 | 22.35 |
I l f
| Zhang & Suen | 11.59 | 10.65 I 14.72 | 26.64 |
! I |
| Rutovitz | 16.53 | 14.11 | 21.59 | 42.08 |
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Fig. 4. Character ‘‘“H”’ and its skeleton.
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Fig. 5. Comparing different algorithms for thinning pattern “‘X.”’

2) It is structure-preserving. The simple version algorithm (SV)
presented by Rutovitz [4] is a parallel algorithm. Zhang and Suen’s
(ZS) algorithm is also parallel. However, both of them have to
overcome the disadvantage of not preserving structures. For exam-
ple, using Algorithms ZS and SV to thin the digital pattern *‘X,”’ the
results are shown in Fig. 5(d) and (e) which lose the structures of the
original pattern. (Fig. 5(a) is the original pattern, 5(b) is the result
thinned by our algorithm 3 which preserves the structure). The
algorithm NS can keep the shape of the original pattern as shown in
Fig. 5(c), but sometimes it cannot exactly keep the basic structure as
shown in Fig. 6, and it is not a parallel algorithm as we defined
above. In this paper, the algorithms we presented can keep the
structure of the original pattern.

For future research, it would be interesting and worthwhile to
explore thinning algorithms for high-dimensional patterns. Realizing

the advantages of our approach, it would also be very interesting to
polish, implement, and apply this serial and parallel thinning
algorithm to a variety of pattern recognition problems including:
character recognition, fingerprint recognition, signature verification,
medical diagnosis, business application, industrial parts inspection,
computer vision, and robotics.

However, there are still some disadvantages: 1) if a spur of two
dots were added to the left end of the middle row of Appendix d, the
noise will propagate. This shares the same drawback as discussed in
[11-[3], [11], and [15], and 2) even worse, the same digital patterns
will totally disappear as shown in literature [1].
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Fig. 6. Thinning of the character ‘‘H’’ using the algorithm NS.

APPENDIX

THINNING OF DIFFERENT DIGITAL PATTERNS USING ALGORITHM 3.

(a) A moving body

(c) The letter ““A”’ (d) The letter ““H”’
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Hamiltonian Cycles in the Shuffle-Exchange Network

WENTAI LIU, THOMAS H. HILDEBRANDT, AND
RALPH CAVIN, III

Abstract—The usefulness of the shuffle-exchange network in parallel
processing applications is well established. The optimal embedding of a
shuffle-exchange network of a given size depends upon the number of
cycles of the shuffle permutation of that size. The cost of one method of
adding fault-tolerance through reconfigurability depends upon the num-
ber of such cycles, and the manner in which they can be connected to
form larger cycles.

This paper presents an exact equation for the number of cycles of a
shuffle of size 2”. We use that result to demonstrate that it is always
possible to form a Hamiltonian cycle on all processors in a shuffle-
exchange connected array. From this, it is apparent that there are a large
number of ways of sharing spare processors among the members of many
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