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Lecture-11

Theorems 5.3 and 5.2
Algorithms 5.1, 5.2

Theorem 5.3

1. The directions are indeed conjugate.

2. Therefore,  the algorithm terminates in n steps (from 
Theorem 5.1).

3. The residuals are mutually orthogonal.

4. Each direction pk and rk is contained in Krylov subspace 
of r0 degree k.
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Theorem 5.3
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Suppose that the kth iteration generated by the conjugate 
gradient method is not the solution point x*. The following 
four properties hold:

Therefore, the sequence {xk} converges to x* in at most n steps.
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• Use induction on (2) and (3)
• First prove (2)
• Then prove (3) using (2)

• Prove (4) by induction using (3) and Theorem 5.2
•Prove (1) using (4) and Theorem 5.2
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Proof

Induction: k=0
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(2) And (3)
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Assume (2) and  (3) are true for k , prove for k+1

To prove (2), by induction:

By multiplying with A

kkkk Aprr α+=+1

By combining this with induction hypothesis on (2)
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Proof
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To prove the reverse inclusion

Induction on (3)
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Since 
Because

Therefore

Induction hypothesis 
on (2)

{ } { }0
1

00110 ,,,span ,,,,span  rAArrrrrr k
kk

+
+ = KKTherefore QED (2)

Proof
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Show (3) holds if k is replaced by k+1
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;111 kkkk prp +++ +−← β

Induction hypo for (3)

By (2)

By (2) for k+1
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QED (3)
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Proof
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Now Conjugacy (4):
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Due to this  the right side becomes Zero for i=k

By induction hypothesis on (4) the vectors are conjugate up to pk

By Theorem 5.2
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By definition:

By definition:

Therefore

(F)
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By applying (3)
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So the first term vanishes in (F). Due to induction hypothesis on (4) the second 
term vanishes as well. Hence QED (4).

So the direction set generated by CG method is indeed a conjugate direction set.

According to Theorem 5.1 the algorithm terminates in at most n steps.

(B)

(C)
By (B) & (C)

(F)
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Proof
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1,,2,1     ,1,,0for        0 −=−== nkkipr i
T
k KK

Since the direction set is conjugate because of (3), by theorem 5.2
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Theorem 5.2 

Let x0 be any starting point and suppose that the sequence 
{xk} is generated by the conjugate direction algorithm. Then

1,,0for        0 −== kipr i
T
k K

and xk is minimizer of                        over the set xbAxxx TT −=
2
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First show that a point      minimizes        over the set (3)  if and only 
if

x~ φ

)()( 11000 −−+++= kk ppxh σσφσ KLet ),,( 110 −= kσσσσ K

Where

Since        is strictly convex quadratic, it has a unique minimizer:)(σh

Chain rule
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)()( xrbAxx =−=∇φ r(x) is the residual
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Proof
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Use induction: 
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But,    is a 1-D minimizer of quadratic function.0α
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Proof
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induction

11

11
1

−−

−−
− −=

k
T
k

k
T

k
k App

pr
α

Conjugacy
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then is given

That is 1-D minimizer of quadratic function.

2,,0for        01 −==− kipr i
T
k K

1−kα

For other vectors pi

This implies  we have minimized quadratic function in k-1 variables

By multiplication

Therefore 1,,0for        0 −== kipr i
T
k K

QEDImplies  we have minimized quadratic function in k variables

If 01 =− k
T
k rp

How do we select conjugate 
directions

• Eigenvalues of A are mutually orthogonal 
and conjugate wrt to A.

• Gram-Schmidt process can be modified to 
produce conjugate directions instead of 
orthogonal vectors.

• Both approaches are expensive.
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Basic Properties of the CG
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Each direction is chosen to be a linear combination of the steepest 
descent direction and the previous direction.
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Therefore

Where      is determined such 
That pk and pk-1 must be conjugate

kβ

It does not need to know all previous directions, only one previous 
direction is required. 
pk is automatically conjugate to all previous directions! 
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p0 is steepest descent
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