L ecture-12

Theorems 5.3 and 5.2
Algorithms 5.1, 5.2

Proof
rir,=0  fori=0,...,k-1 (1
span{r,,r,,....1} = span{ro, Ar,... ,A"ro} @
span{py, Py, P} =spanfry, Ar,.,..., At} ©)
piAp, =0  fori=0,...,k-1 (4)

(4) Holds for k=1 Pl AP, =0 (4

By definition: Prss = = T T Dt P
L AD, =1, Ap +b, . p Ap fori=01,...,k ()
pk+1 i k+1 i k+1pk ( ey
N b - JaAR.
By definition: kil PrAR

Dueto this theright side becomes Zero for

By hypothesis on (4) the vectors are conjugate up to p,

Therefore T :
r..p.=0 fori=0,... .k

kT By Theorem 5.2




Proof

rir. =0 fori=0,...k-1 (1)
Span{rorrl ----- rk} :Span{rO!ArO ----- AkrO} (2)
span{p,. 0., p.} =spanfr,, Av, ..., A'r,} (3)
prAp=0 fori=0,...,k-1 (4
p-kr+1Api =- r‘k-l;'l'Api + bk+1pl-(rApl fOri = 0’1"'" k (F)
rl,p,=0 fori=0,..k (B)
We want to show it istruefor i=0,1,2,.. k-1
By applying (3) _ _
Apl Aspan{ro, Ar,..., A'ro} :span{Aro, Ar,.., A'*lro}
1 span{p,,pyoiP} (C)
rl,Ap =0 fori=0,.. k-1 By (B) & (C)

So thefirst term vanishesin (F). Due to induction hypothesis on (4) the second
term vanishes as well. Hence QED (4).

So the direction set generated by CG method isindeed a conjugate direction set.

According to Theorem 5.1 the algorithm terminates in at most n steps.

Proof

r’r,=0 fori =0,...,k-1 (D)

span{ry.1,.... .1} =spanfr,, Ar,...., Ar,} )
span{p,., pi..... P} =span{i,, Ar,...., At} ©)
piAp =0  fori=0,...k-1 (4

Since the direction set is conjugate because of (4), by theorem 5.2
rep=0 fori=0,...,k-1, k=12...,n-1
By definition
p=-r+bp, Pra = = Nt T D1 Py
T, —A—,T _ T T _ T
P =0=r.(-r+bp.)=-nrr+br p,=-rr

rlr =0 fori=0,....k-1 k=12,...,n-1 QED (1)




Theorem 5.2

Let x, be any starting point and suppose that the sequence
{x} is generated by the conjugate direction algorithm. Then

r’p=0 fori=0,..k-1

and x, is minimizer of over the set

{Xl X= XO + Span{ po """ pk-l}} (3)

Proof

First show that apoint ~ minimizes over the set (3)

rx)'p, =0 fori=0,...,k-1

{x| X=X, +span{ p,,..., pk,l}} ©)

Where
Let h(s)=f(x +sS,p, +... S, ,P,.1)
Since is strictly convex quadratic, it has a unique minimizer:
S) oo izo,..k-1
s . .
Nf (X, +S, Pg+.--+S k1p.,) B, =0 i=0,...,k-1 Chainrule

r(x) is the residua




Proof

Nf (x)=Ax-b=r(x) X
N = T TAAD,

e =M1t Ay (A)
Use induction:

k+1 = Xk +ak pk

From (A)
=T +a AP,
' Po = (fo +a,A) " o
if rlT Eo = roT P, 3, poT Apo rOT Po
| - =- 22
r, p, =0 Then g, ol A,

But, isal-D minimizer of quadratic function.

Proof

rip=0 fori=0,.. k-1

Assumetruefor k-1 re,p,=0 fori=0,...,k-2

e =M1 T APy

T v — T T L
Pl = P afer T4 1P 1 APy 1 By multiplication
If Peaf =0
then&_; isgiven a.,=- rg-lpm
P AR,

That is 1-D minimizer of quadratic function.

T, _ T T _ -
Pin= PN taap Ap, =0+0  1=0...k-2
induction  conjugacy
Thisimplies we have minimized quadratic function ink-1 variables
Therefore 1 p=0 fori=0,... k-1

Implies we have minimized quadratic function ink variables QED




How do we select conjugate
directions

» Eigenvaluesof A are mutually orthogonal
and conjugate wrt to A.

» Gram-Schmidt process can be modified to
produce conjugate directions instead of
orthogonal vectors.

» Both approaches are expensive.

Basic Properties of the CG

Each direction is chosen to be alinear combination of the steepest
descent direction and the previous direction.

pk:'ka+bkpk-1

Or _ .
p=-r.+hbp., Whereb, isdetermined such
Therefore That p, and p,; must be conjugate
PaAP = - P AT+ B AD,
r] Ap,
bK = k -1
P AR,

It does not need to know all previous directions, only one previous
directionisrequired.

p, isautomatically conjugate to al previous directions!




Algorithm 5.1

Givenx,;
Setfom A%~ b Py <o ko 0 P is steepest descent
Whiler, t 0 -
o 7o Nf (x) = Ax- b=r(x)
“ Pr AP,

X1 7 X Ta P
Mor ™ Axa - 1
feaPAP
P AR,
Peaz 7 = st Dy P
k - k+1
end(whilg

k+1

A practical form of GC

pk+1 =- r.k+1 + bk+1 pk’
P =-1 +tb, Py
r'p.=-rr.+br' p. ,

k Py k Tk ke P rkTpI =0 fori =0,...,k-1
TP, =1 0

‘ ‘ Theorem 5.2
Me P == T T (G)

T T
N P . N Ty

a - - txPe . a, - :
< e, EEE) KT an




A practical form of GC
—>

akApk =l Iy

T — T T
&, N1 A = Neaalesa = N Theorem 5.3
T T
Al APy = fealinn - 0 (7r =0 fori=0,..k-1 (1)

T —.T
akrk+1Apk = lNalea

A practical form of GC

T T
IS I 1 (Already shown)
Now
a_l_<Apk = rk;l' e .
a, py Apk = Pyl = Pl

T — H—-—
a oTAp =0- p'r rop=0 fori=0,... k-1
P Apk Pl Theorem 5.2
a, p; Ap, =0+rr, From (G)

T — T
akpkApk _rk rk

—>




Algorithm 5.2

Givenx,; Givenx,;
setr,- Ax - b, pp- -1, k= 0 setry= A% - b, ppa -1 k= 0
Whiler, 1 0 Whiler, * 0
T r_T
a - - :—krk_; a - ‘llf:k ;
P AP P AR
Xy 7 X +A, Py Xer 7 Xt P
lea ™ T +a, AR O
T r. . Ap
bk+1 l’k+_|}rk+1; PR —leA K X
r.k rk pk pk
ST TCY FUURE 3 o B o Pear ™ = e+ By P
k - k+1 k= k+l
end(whilg end(whilg
52 51
Givenx,;
setr,- Ax - b, pp- -1, k= 0
Whiler, 1 0 We only need to know values
e of x, pand r only for 2 iterations.

A - =
P APy

X1 7 X A, pg
Mwa 7 T FaADRG

Major computations. matrix-vector
product, two inner products, and threg
. Vector sums.
l’k+1rk+1 .
ho

Pesz ™ T * bk+1 Py

k - k+1
end(whil@

5.2

bk+1 -




