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Lecture-15

Homework, Rate of Convergence of 
CG, preconditioning, FR-GC, PR-GC

Homework (Due April 17)

• 5.1
• 5.9
• Proof for Theorem 5.5 (see the slides)
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Theorem 5.4

If A has only r distinct eigenvalues, then the CG iteration
will terminate at the solution in at most r iterations.

Theorem 5.5
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Proof
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Homework: 
show this

Proof
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Example
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m largest eigenvalues

For small value  of   
CG will converge in only 
m+1 steps.

ε

Example

The matrix has five large eigenvalues with all smaller eigenvalues 
clustered around .95 and 1.05
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N=14, has four clusters of eigenvalues: single eigenvalues  at 
140, 120, a cluster of 10 eigenvalues very close to 10 with the 
remaining eigenvalues clustered between .95 and 1.05.

Convergence using Condition 
number
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Convergence Rate of Steepest 
Descent: Quadratic Function
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Theorem 3.3

nλλ <1

What is desirable?

• Matrix A should have either:
– Few distinct eigenvalues
– Few distinct eigenvalues, and few clusters of 

eigenvalues
– The condition number of A is small
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Preconditioning

• If the matrix A dose not have favorable 
eigenvalues, we can transform the problem 
such that eigenvalue distribution of a matrix 
in the transformed problem improves. 

Preconditioning 
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Transformed problem:
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Preconditioning

Select C such that:
condition number of                  is much smaller than the original 
matrix A.

The eigenvalues of         are clustered

1−− ACC T
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Algorithm 5.3 (Preconditioned 
CG)
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Homework:convert 5.2 to 5.3 
using preconditioning
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Non-linear CG

• Two changes in linear GC
– Perform line search for step length 
– Replace residual r by the gradient of the 

function
• Two algorithms:

– FR (Fletcher-Reves) (1964)
– PR (Polak-Rebiere) (1969)

• The difference is only in β

Algorithm 5.4 (FR-CG)

)(

;1                 

;           

;           

;             

;           

;   compute           

0  

0 ,   

)(  ,  

;Given 

111

11
1

1

1

00

0000

0

whileend

kk

pfp

ff

ff

fevaluate

pxx

fWhile

kfpset

xff)f(xfevaluate

x

k
FR

kkk

k
T

k

k
T

kFR
k

k

kkkk

k

k

+←
+−∇←

∇∇
∇∇

←

∇
+←

≠∇
←−∇←

∇=∇=

+++

++
+

+

+

β

β

α

α

5.25.4

)(

;1                 

;           

;           

;           

;           

;           

0  

0 ,  , 

;Given 

111

11
1

1

1

0000

0

whileend

kk

prp

rr
rr

Aprr

pxx

App
rr

rWhile

krpbAxrset

x

kkkk

k
T
k

k
T

k
k

kkkk

kkkk

k
T
k

k
T
k

k

k

+←
+−←

←

+←
+←

−←

≠
←−←−←

+++

++
+

+

+

β

β

α

α

α



10

Question

• How do we guarantee that the search 
direction is a descent direction for any 
arbitrary non-linear function?

Choice of step length 
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The search direction pk may fail to be a descent direction, unless 
step length satisfies certain conditions.
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Choice of step length 
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To solve this problem, we will require step length satisfies the
following Strong Wolf’s conditions:

We will show in Lemma 5.6 that the Wolf’s conditions guarantee:

Polak-Ribiere
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They are the same if the f is quadratic 
function, and line search is exact,  since 
gradients (residuals) are mutually orthogonal 
by Theorem 5.3

For general non-linear functions, 
numerical experience indicates  PR-CG 
tends to be more robust and efficient.

For PR -CG strong wolf conditions do 
not guarantee that pk is always a descent 
direction.



12

Other  Choices
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This can satisfy descent property

Yet another choice

Quadratic Termination & 
Restarts

Non-linear CG methods preserves their connections to linear CG. 
Quadratic interpolation along pk guarantees that for a quadratic 
function, the step length is exact, that is non-linear CG reduces to 
linear GC.

Restart non-linear GC after every n steps:

k
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It is steepest descent. It erases the old memory,which may not be 
beneficial.
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Quadratic Termination & 
Restarts

N-step Quadratic convergence can be proved with restarts

If the function is strongly quadratic in a neighborhood of a solution
Assume the algorithm is converging to solution, 
the iterations will enter the quadratic region, 
at some point algorithm will be restarted, that point onward the
behavior will be similar to linear GC.
convergence will occur within n steps
Restart is important, because finite termination is subject to p0 
equal to the negative gradient.

Even if the function is not strongly quadratic,
it can be approximated by Taylor series, if it is smooth.
Therefore substantial progress can be made toward the solution

Restarts

Practically restarts are not implemented.
Because NGC is used for  function, where n is very large
often solution is reached much before n steps. 

Restarts based on other strategies 
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Results
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Results

• Practically PR-GC is preferred over FR-GC.
• We can prove (Theorem 5.8) the global 

convergence of FR-GC.
• But, we can not prove the global convergence of 

PR-GC.
• Not only that, but theorem by Powel (1984): 

– PR-GC can cycle infinitely without approaching a 
solution point, even in an ideal line search is used!
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Results

• Also by Powell (1976):
– If the algorithm enters a region in which the function is 

2-D quadratic, the angle between gradient and the 
search direction pk stays constant. Therefore if the this 
angle is close to 90 degrees, FR method can be slower 
than the steepest descent. 

– PR behaves differently: if a very small step is 
generated, the next search direction tends to be steepest 
descent. This feature prevents a sequence of tiny steps.


