L ecture-15

Homework, Rate of Convergence of
CG, preconditioning, FR-GC, PR-GC

Homework (Due April 17)

« 51
« 59
* Proof for Theorem 5.5 (see the slides)




Theorem 5.4

If A hasonly r distinct eigenvalues, then the CG iteration
will terminate at the solution in at most r iterations.

Theorem 5.5

If A haseigenvalues!,£1,£...£1, wehave
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Proof

Eigenvalues
P IR R I
Select polynomial R() of degreek such that
Q hasroots at k largest eigenvalues
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Proof
Assume eigenvalues | ., .,,...,1 , takekdistinct vaues:
t,<t,,...<t, and - leths

Define polynomial : 2
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Qe )=t (I -t)0 -t,)...(0 -t ) - tyy)
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Qu..(I,)=0fori=n-k+1...,n

Qk+1(0):1

Qk+1(| )-1 Is polynomial of degree k+1 with root at
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Example

{I 1""7| n- m1}{| n—m+1""7I n}
\ m largest eigenvalues
Clustered around 1

| Xner= X k> € 1% - X |l For small value of
CG will convergein only

t m+ 1 steps.
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- clustered eigenyalocs

o— -
unitoeenly distrbaes
cigenvalucs

The matrix has five large eigenvalues with al smaller eigenvalues
clustered around .95 and 1.05




N=14, has four clusters of eigenvalues: single eigenvalues at
140, 120, a cluster of 10 eigenvalues very closeto 10 with the
remaining eigenval ues clustered between .95 and 1.05.

Convergence using Condition
number
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Convergence Rate of Steepest
Descent: Quadratic Function
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What i1s desirable?

» Matrix A should have either:
— Few distinct eigenvalues

— Few digtinct eigenvalues, and few clusters of
eigenvaues

— The condition number of A issmall




Preconditioning

* If the matrix A dose not have favorable
eigenvalues, we can transform the problem
such that eigenvalue distribution of a matrix
in the transformed problem improves.

Preconditioning
Original problem:

f (X) :%XTAX- b"x or Ax=Db
Transformation:
X =CX CX=x
Transformed problem:
~an 1 - - -
f(X)= E(C'lx)T AC'x- b'C*X

f(x)= % K (CTACHX- (CTh)" % (C'TACH)X=(C"b)




Preconditioning
(CTACHX=(C"b)

Select C such that:
condition number of c-TAC* ismuch smaller than the origina
matrix A.

Theeigenvaluesof C TAC! areclustered

One possible preconditioner is C=L", suchthatA=LL"

CTAC'=L'AL " =L'LL'L" =1

Algorithm 5.3 (Preconditioned
CG)

Given x,, preconditioner M ;
setry— AXy- b,
solve My, = r,, for y,;
Po ™ -y k-0
While r, * 0
PeAP
X 7 Xt &P M =C'C
fea 7 N T&ARG
MYis1 = N
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Non-linear CG

« Two changesin linear GC
— Perform line search for step length
— Replaceresidua r by the gradient of the

function
e Two algorithms:

— FR (Fletcher-Reves) (1964)
— PR (Polak-Rebiere) (1969)
 Thedifferenceisonlyin p

Algorithm 5.4 (FR-CG)

Givenx,;
evaluate f, = f(x,), Nf, = Nf (x,)
set p,- -Nf,, k= 0
While Nf, * 0
compute a, ;
X 7 X Ta P
evaluateNf,,;
FR kaTﬂkaﬂ .
RIS,
Pes - N +bTp
k - k+1
end(whilg
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Givenx,;
setry— Ax - b, pp—= -r5,k= 0
Whiler, * 0
Pe AR
X1 7 % Fay P
a7 N ta AR

a,

T
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Question

* How do we guarantee that the search
direction is a descent direction for any
arbitrary non-linear function?

Choice of step length
Prsr ™ - ka+1 + blf-ipk
The search direction p, may fail to be a descent direction, unless
step length satisfies certain conditions.
P =- ka +b*p,.,
kaT P =- kaT ka + bkFRkaT Pr. 1
kaT P =-l ka II” +bkFRkaT Pr. 1

If Rt p., =0, then Nt p, <0 , therefore p, is a descent direction
(Theorem 5.2 for quadratic functions).

If Rt7p., 0 ,thenthe second term may dominate, and Rt p, >0
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Choice of step length

To solve this problem, we will require step length satisfies the
following Strong Wolf’ s conditions:

f(x +ap,) £ f(x)+caNfp,, ¢l (01

N N 1
INf (x +ap,)" p [Ec, INf (x)p. | 0<g<c, <3

We will show in Lemma 5.6 that the Wolf’ s conditions guarantee:

Nf, p, <0

Polak-Ribiere

Kif T (Nf NG ) They arethe sameif thef isquadratic
bih— ik k function, and line search is exact, since
Nf Nf, gradients (residuals) are mutually orthogonal
rr kaTJrleku by Theorem 5.3
k+l kaT ka For general non-linear functions,

numerical experienceindicates PR-CG
tends to be more robust and efficient.

For PR-CG strong wolf conditions do
not guarantee that p, is always a descent
direction.
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Other Choices

b, =max(b;,0) This can satisfy descent property

k+17

CeT -
by = Wiy (N, - TN fy) Y et another choice
(ka+1 - ka) P

Quadratic Termination &
Restarts

Non-linear CG methods preserves their connections to linear CG.
Quadratic interpolation along p, guarantees that for a quadratic
function, the step length is exact, that is non-linear CG reduces to

linear GC.

Restart non-linear GC after every n steps:

N FR

P ™ - I\|f1<+1 + bk+1 Py

Pea 7 - ka+1
It is steepest descent. It erases the old memory,which may not be
beneficial.
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Quadratic Termination &
Restarts

N-step Quadratic convergence can be proved with restarts

If the function is strongly quadratic in a neighborhood of a solution
Assume the algorithm is converging to solution,
theiterations will enter the quadratic region,
at some point algorithm will be restarted, that point onward the
behavior will be similar to linear GC.
convergence will occur withinn steps
Restart isimportant, because finite termination is subject to p,
equal to the negative gradient.

Even if the function is not strongly quadratic,
it can be approximated by Taylor series, if it is smooth.
Therefore substantial progress can be made toward the solution

Restarts

Practicaly restarts are not implemented.
Because NGC isused for function, where n isvery large
often solution is reached much before n steps.

Restarts based on other strategies
INf P

Two consecutive gradients are far from orthogonal.

b, ., =max(b/R 0) Another restarting strategy

k+11
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Results

Termination conditions;||Nf, ||, <10°(2+] f, |)

Or 10, 000 iterations Givenx,; o
evaluate f, = f(x,), Nf, =Nf(x,)

set p, - -Nfo,k-! 0

While Rif, 0
Alg FR AlgPR | Alg PR+ ' compute a,;
Problem n |L|'f_g if-g | |T.-1:g maod . Xy 7 X 48Py
CALCVARI 200 [| 2808/5617 :'.bSI-'szﬁTI 2631/5263 0 | evaluateNf,, ;
GENROS 500 || . ID6B/2151 | 1067/2149 | IO
XPOWSING 1000 || 533/1102 | 2121473 | §7/219 ] R kaﬁl\jfm;
TRIDIAI 1000 || 264/531 | 26m527 | 264527 O Nf, Nf,
MSQRTI 1000 || 422/B49 113/231 113/131 |, e NET(RE - RE) /
XPOWELL 1000 || 568/1175 | 212/473 57/229 3 B = Rif," R, '
TRIGON 1000 || 231/467 40/92 4052 0 Q
- bl P ™ - Nf, + kfinu
k - k+]
end(while)
—14 —
¢, =10% ¢, =1

» Practically PR-GC is preferred over FR-GC.

» We can prove (Theorem 5.8) the global
convergence of FR-GC.

* But, we can not prove the globa convergence of
PR-GC.
* Not only that, but theorem by Powel (1984):

— PR-GC can cycle infinitely without approaching a
solution point, even in an ideal line search is used!




Results

* Also by Powell (1976):

— If the algorithm enters aregion in which the function is
2-D quadratic, the angle between gradient and the
search direction p, stays constant. Therefore if the this
angle is close to 90 degrees, FR method can be slower
than the steepest descent.

— PR behaves differently: if avery small stepis
generated, the next search direction tends to be steepest
descent. This feature prevents a sequence of tiny steps.
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