L ecture-3

Search Directions

Homework Due 1/25/01

« 21,22,23,2.8,2.13,2.14




Rate of Convergence

Definition : Suppose{ p,}}_, isasequencethat
convergesto pandthate =p,-p

|pn+1
oo p| 'n'®rI‘|enr‘

then theseqis said toconverge to p of order
a with asymptotic error constant | .
a=1,linear

a = 2,quadratic

a=1,andl =0,superlinear

n+1 |

Example

e, |
L =75
i

assumee, = .5, then error not exceeding10°®
requiresS iterations for quadratic convergence, and 62
iterationsfor thelinear convergence.




Problem

min f(x)

Definitions
A point X isastationary point if f(x )=0
A point X isaglobal minimizer if f(X)£ f(x) " X
A point X isalocal minimizerif thereisaneighborhood N sit.
f(X)Ef(x)"xI N
A point X isastrict local minimzer if
thereis aneighborhood N sit.
f(X)< f(x)"xI N,xtx

if Nf(x')=0,but X is ndther aminmum nor
amaxima, itis cdled asaddle point.




First Order necessary conditions

If X isaloca minimizer and f
Is continuously differenti adle in an
open neighborho od of X", then Nf (x) = 0.

Second order necessary
conditions

If X" isalocal minimizer and N?f
is continuous in an open neighborho od of X',
then Nf (x") =0 and N?f (x") is positive semidefini te.




Second order sufficient
conditions

Supposethat N*f is continuous in an open
neighborho od of X and that Nf (x') =0

and Nf(x") is positive definite. Then X isastrict
local minimizer of f.

Convex Function

isaconvex function if for any two points X and Y in its domain,
the graph of ¢ liesbelow straight line connecting (x, f (X)) tO (y, f(y))

flax+(1-a)y)£af (X)+(@-a)f(y) "al [0]]




Convex Function

When f isconvex, any local minimizer
X isaglobal minimzer of f.If inaddition f

isdifferentiable, then any stationary point X’
iIsagobal minimzerof f.

Line Search

min f (x +ap,)

a>0

x, current iterate
P, direction of a search
a distance to move aong




Model Algorithm for Smooth

Functions
» Let x  bethecurrent estimate of X .
- .] If the conditions for

convergence are satisfied, the algorithm terminates
with X, asasolution.

- .] Compute a non-zero n-
vector p,, the direction of search.
- ] Compute a positive scalar, a,

, the step length, for which it holds that
F(% +a,p) < fx)
— [ ] Set

Xy X ta,p, k- k+l

k+1

and go back to the first step.

Steepest Descent

f(x +ap) = f (x.) +ap'f, +§a2pTN2f (% + )P

minp'Nf,  subjectto | pll=1
p

p'Nf =|l pllINf, [lcosq  dot product

p'Nf, =[| pI[INf JI(-1)  minimum value
___ Nf,

ST
i,

[INf |

Taylor series




Steepest Descent

p, =- Nf Steepest descent direction

p,"Nif, =Il p, IINf, [lcosq, <0 downhill direction
Any descent direction-one that
makes an angle of strictly less than
90 degrees with the gradient vector
produces a decrease in f, provided, that the
step length is sufficiently small.

Newton’s Direction

~ 1 -~

— T T2 _
f(xg+p)=Ff +p Nf, +=p N°f,p=m,  Taylor series
d 2 approximation
d_nf}szk*'mszpzo
p=-N2f 'Nf
pY =-R2f *Rif N superscript for Newton Hessian
py =-N2f, 'Nf,
- N*fpe =Nf,
- p NP =R p)
~ T~
Nf,"pe =- o N2f e £-s 1P IF
Nf,"p) <0 Therefore P isadescent direction

Because N*f isp.d.




Newton’s Direction

» Thereisanatura step length, 5 of 1 for
Newton’s direction.

o If isnot p.d., the Newton’' s directions may not
be qlefl ned, because inverse may not exists.

« Even inverse exists, the descent property may not
be satisfied.

* Inthat case, the search direction is modified to be
adown hill direction.

* Newton direction gives a quadratic local
convergence.

 The man drawback of Newton’s method is
computation of a Hessian matrix.

Approximation of Hessian
Taylor Series
Rif (x+ p) = Kif (x) + K2 (x) p
Let
P =X = X X=X
Nfiesq = Nfi N2 fi s (K = %)
N2 s (X - %) = Nfyg - NFy

Bk+1$< = yk
Approximate/

Hessian SK = Xk+1 - Xk’ yk = ka+1- ka




B.. should be symmetric
The difference between successive approximation B, to B,

have alow rank.

_r . V- BS)(Ye- Bs)' .
B =B+ T SRI (symmetric rank one)
(yk - Bl<$<) S

3<+1 = Bk - BKS(%T 3< + Yi yII Broyden,Fletcher, Shanno
s BS VS
Quasi-Newton
pk =" Bi;lmfk
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Inverse Hessian

Instead of inverting approximation of Hessian, we can
directly compute the approximation of inverse of Hessian:

Heo = (- 1 SYOH( - 1Sy )+r i SS

r.= 1
‘ y;S( H =B’
Py =- Hkak
Conjugate Gradient
P =- Nf (Xk)+ bkpk-l b, isscaarthat P«1

and p,_are conjugate

Two vectors are conjugate with respect to amatrix G if

kaka-l =0
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