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Subsampling

• Selecting one single value to represent 
several values in a part of  the image. 
– For example, use top left corner of 2X2 block to 

represent the block
– Compression ratio 75%
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Subsampling

• A better way- averaging
• Compression ratio 75%
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Subsampling
• Subsample in non-square blocks
• Different components may be subsampled at 

different frequencies
• Works best for images with low frequency 

components
• Suitable when target output resolution is 

lower than source resolution
• Works poorly on images with fine details, 

including text

Quantization

• Mapping of a large range of possible sample 
values into a smaller range of values or 
codes.

• Fewer bits are required to encode the 
quantized sample.

• Examples
– -Letter grades (A, B, C, D, F)
– Rounding of person’s age, height, or weight
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Quantization

• Truncation and Rounding
• Quantized levels need not be evenly spaced
• Can be used for relative as well as absolute 

information
• Information is lost in quantiztion, but the 

error can be recovered

Truncation

• Discard lower-order bits
– average error 1/2 LSB of target resolution

• Example

9 11 17 21

19 51 33 14

19 23 18 15

53 47 12 43

0 10 10 20

10 50 30 10

10 20 10 10

50 40 10 40
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Rounding

• Add 5 and then truncate the result.
– One more LSB participate than in truncation
– average error 1/4 LSB

13 19 9 5

14 17 8 15

52 49 53 47

50 58 51 42

10 20 10 10

10 20 10 20

50 50 50 50

50 60 50 40

Random Rounding
• Add a random number in the range [0,LSB], then 

truncate to LSB.
• Decimal number “43” has 70% chance of being “40” 

and 30% chance of  being “50”.
• Information in all bits participates.
• Average error 1/3 LSB (higher than rounding, but 

results look better.)
• Identical pixels may be rounded to different values.
• Colors not available in target color space may result.
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Error Diffusion

• Quantize the number, subtract quantization 
error from adjacent pixels that have not 
been quantized.
– Preserves color levels over very localized areas
– Every bit contributes to the final image

Error Diffusion

17 14 12 19

20 11 12 19

10 13 19

10 22
20

Result   20   10   10   20
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Floyd-Steinberg

• Qunatize one pixel
• Distribute error to four of its neighbors 

(scan order).
E 7/16

3/16 5/16 1/16

Example

200 500 800 400 800

800 600 553 A 613

12 B C D 423

612 916 453 395 532

200 500 800 400 800

800 600 600 A-21 613

12 B-9 C-15 D-2 423

612 916 453 395 532
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Delta Coding

• Code the difference between adjacent pixels.
• Since adjacent pixels are similar, the 

difference is normally small, and requires 
fewer bits to code.

• A typical pixel value requires 8 bits.
• The difference between any 8 bit pixels is in 

the range [-255,255], which needs 9 bits!

Delta Coding

• But most deltas will be small.
– Smaller deltas can be assigned shorter codes
– Smaller deltas can be ignored completely
– smaller deltas can be quantized more finally for 

better quality
• Complementary delta values can share a 

code; e.g., +1 and -255 yield same result in 8 
bit positive value.

• 9 bits are not required!
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Encoding with quantization loss

• Encoder must calculate incorrect pixel value 
that the decoder will decode, and use that 
value in computing the next delta, to 
minimize the quantization loss.

Prediction

• Prediction further reduces delta values.
• In delta coding prediction is the last pixel
• Better prediction algorithm means better 

compression ratio.
• It can improve picture quality
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Prediction

• Use left pixel (delta coding)
• Use linear interpolation (left+(left-

previous))
• Use 2d interpolation (left+above-corner)

Run-length Encoding (RLE)

• Image compression method that works by 
counting the number of adjacent pixels with 
the same gray levels values.

• Many consecutive zeros in deltas resulting 
from prediction can be coded compactly.
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RLE: Example
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00000000

00101111

01100100

01001110

00111110

00000110

00001111

000000008
0, 4, 4
1, 2, 5
1, 5, 2
1, 3, 2, 1, 1
2, 1, 2, 2, 1
0, 4, 1, 1, 2
8

Huffman Coding

• Given “n” possible symbols we need log2(n) 
bits to code  them using binary system.

• If  probability of occurrence of these 
symbols is not uniform, then we can code 
them using variable number of bits.

• This is lossless and efficient coding.
• Assign shorter codes to more frequent 

symbols, and longer codes to less frequent.
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Huffman Coding

A1

A2

A3

A4

P=.5

P=.25

P=.125

P=.125

0

1
0

1
0

1 A1 0
A2 10
A3 110
A4 111

Huffman Coding
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Image Compression

Image Compression

1

1.58

.73



13

Variable Length Coding (Vector 
Deltas)

0 1
1 010
2 0010
3 00010
4 0000110
5 00001010
….
15 000000011010

Variable Length Coding (DCT 
AC Coefficients)

0,1 110
1,1 0110
0,-1 111
7,-1 0001001
EOB 10
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Color Images

Color Science

• “Colors” as we perceive them  are weighted 
sum of multiple wavelengths.

• Three types of photoreceptors in eye 
roughly correspond to Red, Green and Blue.

• We simulate colors by hitting those 
photoreceptors with calculated amounts of 
Red, Green and Blue.
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Color Spaces

• R, G, B
• Y, Cb, Cr
• Y, I, Q
• C, M, Y
• I, H, S
• Y, U, V

Luma & Chroma
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Y, I, Q 

BGRQ

BGRI

BGRY

31.52.21.

32.28.6.

11.59.3.

+−=
−+=
++=

I=Red-Cyan
Q=magenta-green
Y=white-black

C, M, Y

BY

GM

RC

−=
−=

−=

1

1

1

Cyan, Magenta and Yellow: Primary 
colors of pigments.
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Intensity, Hue and Saturation
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Saturation measures lack of whiteness in the color.
Hue is proportional to the average wavelength of the
color.   (A “deep”, “bright” “orange”.) (245,110,20)

The Color Cube
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The Color Circle

The Color Cylinder
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Y, U, V
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0772.11

714.344.1

4002.101

Y represents the brightness of a pixel.
U, V represent how far blue and red are 
from white.

Average Delta Values for Adjacent Pixels

Y=13
U=1
V=1
YUV=13

R=13
G=13.2
B=12.7
RGB=13

We can sub-sample U & V over a number
of pixels without loss of picture quality.
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YUV Subsampling

Simple Compression Scheme

• Convert RGB to YUV space
• Predict each pixel’s value from adjacent 

pixels
• Calculate deltas from the predicted values
• Quantize the differences
• Encode the quantized deltas, including run-

length encoding
• Diffuse quantization error to nearby pixels



22

Decompression Scheme

• Predict each pixel’s value components from 
adjacent pixels

• Decode the stored quantized difference 
(deltas) 

• Add decoded delta to the predicted values
• Convert each pixel to RGB space
• Filter result to recapture lost information


