
1

Subsampling

• Selecting one single value to represent
several values in a part of the image.
– For example, use top left corner of 2X2 block to

represent the block
– Compression ratio 75%

11 15 19 55

13 14 21 32

39 17 24 76

43 34 27 80

11 11 19 19

11 11 19 19

39 39 24 24

39 39 24 24

Subsampling

• A better way- averaging
• Compression ratio 75%

11 15 19 55

13 14 21 32

39 17 24 76

43 34 27 80

13 13 32 32

13 13 32 32

33 33 51 51

33 33 51 51

2

Subsampling
• Subsample in non-square blocks
• Different components may be subsampled at

different frequencies
• Works best for images with low frequency

components
• Suitable when target output resolution is

lower than source resolution
• Works poorly on images with fine details,

including text

Quantization

• Mapping of a large range of possible sample
values into a smaller range of values or
codes.

• Fewer bits are required to encode the
quantized sample.

• Examples
– -Letter grades (A, B, C, D, F)
– Rounding of person’s age, height, or weight

3

Quantization

• Truncation and Rounding
• Quantized levels need not be evenly spaced
• Can be used for relative as well as absolute

information
• Information is lost in quantiztion, but the

error can be recovered

Truncation

• Discard lower-order bits
– average error 1/2 LSB of target resolution

• Example

9 11 17 21

19 51 33 14

19 23 18 15

53 47 12 43

0 10 10 20

10 50 30 10

10 20 10 10

50 40 10 40

4

Rounding

• Add 5 and then truncate the result.
– One more LSB participate than in truncation
– average error 1/4 LSB

13 19 9 5

14 17 8 15

52 49 53 47

50 58 51 42

10 20 10 10

10 20 10 20

50 50 50 50

50 60 50 40

Random Rounding
• Add a random number in the range [0,LSB], then

truncate to LSB.
• Decimal number “43” has 70% chance of being “40”

and 30% chance of being “50”.
• Information in all bits participates.
• Average error 1/3 LSB (higher than rounding, but

results look better.)
• Identical pixels may be rounded to different values.
• Colors not available in target color space may result.

5

Error Diffusion

• Quantize the number, subtract quantization
error from adjacent pixels that have not
been quantized.
– Preserves color levels over very localized areas
– Every bit contributes to the final image

Error Diffusion

17 14 12 19

20 11 12 19

10 13 19

10 22
20

Result 20 10 10 20

6

Floyd-Steinberg

• Qunatize one pixel
• Distribute error to four of its neighbors

(scan order).
E 7/16

3/16 5/16 1/16

Example

200 500 800 400 800

800 600 553 A 613

12 B C D 423

612 916 453 395 532

200 500 800 400 800

800 600 600 A-21 613

12 B-9 C-15 D-2 423

612 916 453 395 532

7

Delta Coding

• Code the difference between adjacent pixels.
• Since adjacent pixels are similar, the

difference is normally small, and requires
fewer bits to code.

• A typical pixel value requires 8 bits.
• The difference between any 8 bit pixels is in

the range [-255,255], which needs 9 bits!

Delta Coding

• But most deltas will be small.
– Smaller deltas can be assigned shorter codes
– Smaller deltas can be ignored completely
– smaller deltas can be quantized more finally for

better quality
• Complementary delta values can share a

code; e.g., +1 and -255 yield same result in 8
bit positive value.

• 9 bits are not required!

8

Encoding with quantization loss

• Encoder must calculate incorrect pixel value
that the decoder will decode, and use that
value in computing the next delta, to
minimize the quantization loss.

Prediction

• Prediction further reduces delta values.
• In delta coding prediction is the last pixel
• Better prediction algorithm means better

compression ratio.
• It can improve picture quality

9

Prediction

• Use left pixel (delta coding)
• Use linear interpolation (left+(left-

previous))
• Use 2d interpolation (left+above-corner)

Run-length Encoding (RLE)

• Image compression method that works by
counting the number of adjacent pixels with
the same gray levels values.

• Many consecutive zeros in deltas resulting
from prediction can be coded compactly.

10

RLE: Example

































00000000

00101111

01100100

01001110

00111110

00000110

00001111

000000008
0, 4, 4
1, 2, 5
1, 5, 2
1, 3, 2, 1, 1
2, 1, 2, 2, 1
0, 4, 1, 1, 2
8

Huffman Coding

• Given “n” possible symbols we need log2(n)
bits to code them using binary system.

• If probability of occurrence of these
symbols is not uniform, then we can code
them using variable number of bits.

• This is lossless and efficient coding.
• Assign shorter codes to more frequent

symbols, and longer codes to less frequent.

11

Huffman Coding

A1

A2

A3

A4

P=.5

P=.25

P=.125

P=.125

0

1
0

1
0

1 A1 0
A2 10
A3 110
A4 111

Huffman Coding

)(log)(
255

0
2 ipipH

i
∑

=

−=

75.1125.log125.

125.log125.25.log25.5.log5.

=
−−−−=H

75.13125.

3125.225.15.

=×
+×+×+×=R

Entropy

Codeword
length

12

Image Compression

Image Compression

1

1.58

.73

13

Variable Length Coding (Vector
Deltas)

0 1
1 010
2 0010
3 00010
4 0000110
5 00001010
….
15 000000011010

Variable Length Coding (DCT
AC Coefficients)

0,1 110
1,1 0110
0,-1 111
7,-1 0001001
EOB 10

14

Color Images

Color Science

• “Colors” as we perceive them are weighted
sum of multiple wavelengths.

• Three types of photoreceptors in eye
roughly correspond to Red, Green and Blue.

• We simulate colors by hitting those
photoreceptors with calculated amounts of
Red, Green and Blue.

15

16

Color Spaces

• R, G, B
• Y, Cb, Cr
• Y, I, Q
• C, M, Y
• I, H, S
• Y, U, V

Luma & Chroma

5.
2

5.
6.1

1.6.3.

+−=

+
−

=

++=

YB
C

YR
C

BGRY

r

b

17

Y, I, Q

BGRQ

BGRI

BGRY

31.52.21.

32.28.6.

11.59.3.

+−=
−+=
++=

I=Red-Cyan
Q=magenta-green
Y=white-black

C, M, Y

BY

GM

RC

−=
−=

−=

1

1

1

Cyan, Magenta and Yellow: Primary
colors of pigments.

18

Intensity, Hue and Saturation

















−−+−

−+−
=

−=

++=

−

)))(()(

)]()[(
2
1

cos

),,min(
31

2

1

BGBRGR

BRGR
h

I
BGR

S

BGRI

Saturation measures lack of whiteness in the color.
Hue is proportional to the average wavelength of the
color. (A “deep”, “bright” “orange”.) (245,110,20)

The Color Cube

19

The Color Circle

The Color Cylinder

20

Y, U, V

































−−
−−=

















B

G

R

V

U

Y

081.419.5.
5.331.169.

114.587.299.
































−−=

















Y

V

U

B

G

R

0772.11

714.344.1

4002.101

Y represents the brightness of a pixel.
U, V represent how far blue and red are
from white.

Average Delta Values for Adjacent Pixels

Y=13
U=1
V=1
YUV=13

R=13
G=13.2
B=12.7
RGB=13

We can sub-sample U & V over a number
of pixels without loss of picture quality.

21

YUV Subsampling

Simple Compression Scheme

• Convert RGB to YUV space
• Predict each pixel’s value from adjacent

pixels
• Calculate deltas from the predicted values
• Quantize the differences
• Encode the quantized deltas, including run-

length encoding
• Diffuse quantization error to nearby pixels

22

Decompression Scheme

• Predict each pixel’s value components from
adjacent pixels

• Decode the stored quantized difference
(deltas)

• Add decoded delta to the predicted values
• Convert each pixel to RGB space
• Filter result to recapture lost information

