
1

Visual Lipreading

Image Sequences of “A” to “J”

2

Particulars
• Problem: Pattern differ spatially
• Solution: Spatial registration using SSD
• Problem : Articulations vary in length, and

thus, in number of frames.
• Solution: Dynamic programming for

temporal warping of sequences.
• Problem: Features should have compact

representation.
• Solution: Principle Component Analysis.

Feature Subspace Generation

• Generate a lower dimension subspace
onto which image sequences are
projected to produce a vector of
coefficients.

• Components
– Sample Matrix
– Most Expressive Features

3

Generating the Sample Matrix

• Consider letters, each of which has a training set
of K sequences. Each sequence is compose of images:

PIII ,,, 21 K

• Collect all gray-level pixels from all images in a
sequence into a vector:

)),(,),1,1(),,(,),1,1(),,(,),1,1((2211 NMIINMIINMIIu PP KKKK=

ε

. Generating the Sample Matrix
• For letter , collect vectors into matrix T

[]KuuuT K,, 21=ω

• Create sample matrix A:

[]εTTTA K,, 21=

ω

•The eigenvectors of a matrix are defined as:TAAL =

iiiL φλφ =

4

The Most Expressive Features

• Use Q most significant eigenvectors.

•Any image sequence, u, can be represented as:

aau
Q

n
n n

φφ == ∑
=1

• The linear coefficients can be computed as:

n
T

n ua φ=

• is an orthonormal basis of the sample matrix.φ

Training Process
• Model Generation

– Warp all the training sequences to a fixed
length.

– Perform spatial registration (SSD).
– Perform PCA.
– Select Q most significant eigensequences,

and compute coefficient vectors “a”.
– Compute mean coefficient vector for each

letter.

5

Recognition

• Warp the unknown sequence.

• Perform spatial registration.

• Compute:

• Determine best match by

||||

.
xww

i
T
x

x
i

aad

ua

−=

= φ

)(min ω
ω d

Extracting letters from Connected Sequences

• Average absolute intensity difference
function

||),(),(||
1

)(1
1 1

yxIyxI
MN

nf n

M

x

N

y
n −

= =

−= ∑∑
• f is smoothed to obtain g.
• Articulation intervals correspond to
peaks and non-articulation intervals
correspond to valleys in “g”.

6

Extracting letters from Connected Sequences

• Detect valleys in g.

• From valley locations in g, find
locations where f crosses high
threshold.

• Locate beginning and ending frames.

7

A 12-22

B 26-39

C 42-55

D 57-67

Results

0
10
20

30
40

50
60
70

80
90

I II III

ES-1
ES-2
HMM
Cox

I: “A” to “J” one speaker, 10 training seqs
II. “A” to “M”, one speaker, 10 training seqs
III. “A” to “Z”, ten speakers, two training seqs/letter/person

8

Show Video Clip

9

10

Making Faces

Guenter et al
SIGGARPH’98

Making Faces

• System for capturing 3D geometry and color
and shading (texture map).

• Six cameras capture 182 color dots (six
colors) on a face.

• 3D coordinates for each color dot are
computed using pairs of images.

• Cyberware scanner is used to get dense wire
frame model.

11

Making Faces

• Two models (cyberware and frame
data) are related by a rigid
transformation.

• Movement of each node in successive
frames is computed by determining
correspondence of nodes.

Applications

– Facial expressions can be captured in a studio,
– delivered via CDROM or internet to a user
– reconstructed in real time on a user’s computer

in a virtual 3D environment

• User can select
– any arbitrary position for the face,
– any virtual camera view point,
– any size

12

Six Views

Color Dots

13

Wireframe Model

Main Steps

• 3-D reconstruction from 2-D dots
• Correspondence of Cyberware dots (reference)

with 3-D frame dots
• Frame to frame dot correspondences

• Constructing The Mesh
• Compression of Geometric Data

14

Intersection of two rays is 3-D
point

15

3-D reconstruction from 2-D
dots

• Generate all potential 2-D point correspondences
for k cameras with n points in each camera:

• Each point correspondence gives rise to a 3-D
candidate point defined as intersection of two rays
cast from 2-D points.

• Project 3-D candidate point to each of two camera
views, if the projection is not within some bound
from the centroid of either 2-D point then discard
it as a potential 3-D candidate point.

2

2
n

k







3-D reconstruction from 2-D dots

• Each of the points in 3-D list is projected into a
reference view, which is the camera with the best
view of all points on the face.
– If the projected point is not within a threshold distance

from the centroid of 2-D dot it is deleted from the list
– The remaining points constitute 3-D match list for that

point
• For each 2-D point possible combinations of

three points in the 3-D list are computed, and the
combination with the smallest variance is chosen.
– The average of three points in the best combination is

the true 3-D position corresponding to a 2-D dot.







3
m

16

Correspondence of Cyberware dots
(reference) with 3-D frame dots

• Obtain Cyberware scan of a face.
• Place reference dots on the Cyberware

model by manually clicking on the dots.
• Align reference dots in Cyberware scan

with the video frame dots.
– Manually align frame dots in frame zero with

the reference dots

Correspondence of Cyberware dots
(reference) with 3-D frame dots

– Automatically align reference dots with frame
dots in other frames by solving correspondence
using graph matching

• For each reference dot add an edge for every frame
dot of the same color that is within a distance e.

• Search for connected components of graph which
has equal number of reference and frame dots (most
connected components will have two dots, one for
reference and other from frame dots).

17

Correspondence of Cyberware dots
(reference) with 3-D frame dots

Frame to frame dot correspondences

• Assume Cyberware scan as a reference nodes
• Solve correspondence between reference dots and

frame dots for frame 0.
• For each frame i>0 move the reference dots to the

location in previous frame, then find the best
match between the reference dot and neighboring
frame dots.

• Move each reference dot to the location of its
corresponding 3D location.

i
jj

i
j vdd

r
+=

18

Constructing The Mesh

• Move vertices by a linear combination of
the offsets of the nearest matching dots.

|||| k
i
k

k

j
kj

i
j ddpp −+= ∑α

Compression of Geometric Data

• 182 3-D dots in each frame
• Use eigen vector approach to reduce

dimensionality to only 45 principal components
• Need to transmit the coefficients and eigen vectors
• They reduced geometric data using this approach

to 26kbps for coefficients, and 13kbps for eigen
vectors

19

Compression

Original 400 kbps 200 kbps

Rendered Images

