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Visual Lipreading

Image Sequences of “A” to “J”
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Particulars
• Problem: Pattern differ spatially
• Solution: Spatial registration using SSD
• Problem : Articulations vary in length, and 

thus, in number of frames.
• Solution: Dynamic programming for 

temporal warping of sequences.
• Problem: Features should have compact 

representation.
• Solution: Principle Component Analysis.

Feature Subspace Generation

• Generate a lower dimension subspace 
onto which image sequences are 
projected to produce a vector of 
coefficients.

• Components
– Sample Matrix
– Most Expressive Features
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Generating the Sample Matrix

• Consider       letters, each of which has a training set 
of K sequences. Each sequence is compose of images: 

PIII ,,, 21 K

• Collect all gray-level pixels from all images in a 
sequence  into a vector:
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ε

. Generating the Sample Matrix
• For letter       , collect  vectors into matrix T

[ ]KuuuT K,, 21=ω

• Create sample matrix A:

[ ]εTTTA K,, 21=

ω

•The eigenvectors of a matrix                are defined as:TAAL =

iiiL φλφ =
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The Most Expressive Features

• Use Q most significant eigenvectors.

•Any image sequence, u, can be represented as:

aau
Q

n
n n

φφ == ∑
=1

• The linear coefficients can be computed as:

n
T

n ua φ=

• is an orthonormal basis of the sample matrix.φ

Training Process
• Model Generation

– Warp all the training sequences to a fixed 
length.

– Perform spatial registration (SSD).
– Perform PCA.
– Select Q most significant eigensequences, 

and  compute coefficient vectors “a”.
– Compute mean coefficient vector for each 

letter.
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Recognition

• Warp the unknown sequence.

• Perform spatial registration.

• Compute:

• Determine best match by
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Extracting letters from Connected  Sequences

• Average absolute intensity difference 
function
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• f  is smoothed to obtain g.
• Articulation intervals correspond to 
peaks and non-articulation intervals 
correspond to valleys in “g”.
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Extracting letters from Connected  Sequences

• Detect valleys in g.

• From valley locations in g, find 
locations where f crosses high 
threshold.

• Locate beginning and ending frames.
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A 12-22 

B 26-39

C 42-55

D 57-67

Results
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I: “A” to “J” one speaker, 10 training seqs
II. “A” to “M”, one speaker, 10 training seqs
III. “A” to “Z”, ten speakers, two training seqs/letter/person



8

Show Video Clip
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Making Faces

Guenter et al 
SIGGARPH’98

Making Faces

• System for capturing 3D geometry and color 
and shading (texture map).

• Six cameras capture 182 color dots (six 
colors) on a face.

• 3D coordinates for each color dot are 
computed using pairs of images. 

• Cyberware scanner is used to get dense wire 
frame model.
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Making Faces

• Two models (cyberware and frame 
data) are related by a rigid 
transformation.

• Movement of each node in successive 
frames is computed  by determining 
correspondence of nodes.

Applications

– Facial expressions can be captured in a studio, 
– delivered via CDROM or internet to a user
– reconstructed in real time on a user’s computer 

in a virtual 3D environment

• User can select 
– any arbitrary position for the face, 
– any virtual camera view point, 
– any size
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Six Views 

Color Dots
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Wireframe Model

Main Steps

• 3-D reconstruction from 2-D dots
• Correspondence of Cyberware dots (reference) 

with 3-D frame dots
• Frame to frame dot correspondences

• Constructing The Mesh
• Compression of Geometric Data
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Intersection of two rays is 3-D 
point
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3-D reconstruction from 2-D 
dots

• Generate all potential 2-D point correspondences 
for k cameras with n points in each camera: 

• Each point correspondence gives rise to a 3-D 
candidate point defined as intersection of two rays 
cast from 2-D points.

• Project 3-D candidate point to each of two camera 
views, if the projection is not within some bound 
from the centroid of either 2-D point then discard 
it as a potential 3-D candidate point. 
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3-D reconstruction from 2-D dots

• Each of the points in 3-D list is projected into a 
reference view, which is the camera with the best 
view of all points on the face. 
– If the projected point is not within a threshold distance 

from the centroid of 2-D dot it is deleted from the list
– The remaining points constitute 3-D match list for that 

point
• For each 2-D point         possible combinations of 

three points in the 3-D list are computed, and the 
combination with the smallest variance is chosen.
– The average of three points in the best combination is 

the true 3-D position corresponding to a 2-D dot.
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Correspondence of Cyberware dots 
(reference) with 3-D frame dots

• Obtain Cyberware scan of a face.
• Place reference dots on the Cyberware 

model by manually clicking on the dots.
• Align reference dots in Cyberware scan 

with the video frame dots.
– Manually align frame dots in frame zero with 

the reference dots

Correspondence of Cyberware dots 
(reference) with 3-D frame dots

– Automatically align reference dots with frame 
dots in other frames by solving correspondence 
using graph matching

• For each reference dot add an edge for every frame 
dot of the same color that is within a distance e.

• Search for connected components of graph which 
has equal number of reference and frame dots (most 
connected components will have two dots, one for 
reference and other from frame dots).
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Correspondence of Cyberware dots 
(reference) with 3-D frame dots

Frame to frame dot correspondences

• Assume Cyberware scan as a reference nodes
• Solve correspondence between reference dots and 

frame dots for frame 0.
• For each frame i>0 move the reference dots to the 

location in previous frame, then find the best 
match between the reference dot and  neighboring 
frame  dots. 

• Move each reference dot to the location of its 
corresponding 3D location.
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Constructing The Mesh

• Move vertices by a linear combination of 
the offsets of the nearest matching dots.
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Compression of Geometric Data

• 182 3-D dots in each frame
• Use eigen vector approach to reduce 

dimensionality to only 45 principal components
• Need to transmit the coefficients and eigen vectors
• They reduced geometric data using this approach 

to 26kbps for coefficients, and 13kbps for eigen 
vectors
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Compression

Original 400 kbps 200 kbps

Rendered Images


