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Abstract

In free-viewpoint video, the viewer can interactively choose his
viewpoint in 3-D space to observe the action of a dynamic real-
world scene from arbitrary perspectives. The human body and its
motion plays a central role in most visual media and its structure
can be exploited for robust motion estimation and efficient visual-
ization. This paper describes a system that uses multi-view syn-
chronized video footage of an actor’s performance to estimate mo-
tion parameters and to interactively re-render the actor’s appearance
from any viewpoint.
The actor’s silhouettes are extracted from synchronized video
frames via background segmentation and then used to determine
a sequence of poses for a 3D human body model. By employing
multi-view texturing during rendering, time-dependent changes in
the body surface are reproduced in high detail. The motion capture
subsystem runs offline, is non-intrusive, yields robust motion pa-
rameter estimates, and can cope with a broad range of motion. The
rendering subsystem runs at real-time frame rates using ubiquous
graphics hardware, yielding a highly naturalistic impression of the
actor. The actor can be placed in virtual environments to create
composite dynamic scenes. Free-viewpoint video allows the cre-
ation of camera fly-throughs or viewing the action interactively
from arbitrary perspectives.

CR Categories: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Motion,Shape,Time-Varying Imagery,Tracking;
I.4.9 [Image Processing and Computer Vision]: Applications;I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: human motion capture, body model, multi-video tex-
turing, image-based rendering

1 Introduction

Currently, visual media such as television and motion pictures only
present a two dimensional impression of the real world. The cam-
era positions are unchangeable and determined only by the direc-
tor. Traditionally, the goal of Computer Graphics research has been
to develop algorithms for realistic rendering of synthetic scenes
from arbitrary viewpoints. The focus of Computer Vision, on the
other hand, is the inverse process of extracting a model of a given
real-world scene using information from optical sensors. In recent
years, the advent of new technologies and challenges from possi-
ble new applications have led to a convergence of both fields [Ter-
zopoulos et al. 1995]. One interdisciplinary research area that
embraces developments from both disciplines is Free-Viewpoint
Video [Wuermlin et al. 2002; Matsuyama and Takai 2002]. The
goal is to bring about a sense of immersion by giving the viewer
the freedom to choose his viewpoint at will, displaying a dynamic
real-world scene from arbitrary perspectives.

The possible applications are manifold. A free-viewpoint video
system can assist a coach in analyzing the efficiency of his athlete’s
motion. Commentators in a post-game analysis of sports events are
provided with a powerful tool to show from moving viewpoints a
basketball player jumping towards the hoop.

Motion pictures gain an interactive and immersive dimension by
seating the viewer in the director’s chair and letting him choose his
viewpoint interactively. For conventional movie production, free-
viewpoint techniques offer new tools for the post-production pro-
cess, including camera movement and virtual reality elements.

In most movie scenes, attention focuses on the actors involved.
In recent feature films, free-viewpoint video elements involving ac-
tors, such as freeze-and-rotate camera shots have been included.
These effects are made possible by recording the actor with tens
to hundreds of cameras placed around the set. Unfortunately, this
hardware effort is only affordable for high budget movie produc-
tions and the large number of video streams are not a feasible data
format for distribution of free-viewpoint video as mass media.

Due to the importance of actors for visual media, there is a
strong motivation to make free-viewpoint video acquisition of hu-
man scenes less cumbersome. The produced data format must be
suitable for effective transmission and real-time rendering on state-
of-the-art consumer-grade hardware.

Previous approaches for free-viewpoint rendering of real-world
scenes presented in the Computer Graphics community typically
involve the explicit reconstruction of scene geometry from the im-
ages at every time instant [Matusik et al. 2001; Matusik et al. 2000;
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Moezzi et al. 1997] without using a priori model information and
explicit representation of motion data. Researchers in Computer
Vision have developed marker-free motion capture algorithms that
employ a priori body models for tracking [Gavrila 1999]. Using the
data to generate realistic novel views of a scene, however, is usually
not addressed.

We believe that the combination of marker-free motion capture
and multi-view texture generation is highly effective for synthesiz-
ing novel views of a human in motion. This paper presents a new
approach that implements this design concept in a working sys-
tem. A generic body model consisting of a triangle mesh shape
representation and a kinematic skeleton is used to follow the mo-
tion over time. The input to the system consists of synchronized
multi-view video streams that are recorded in a controlled environ-
ment by stationary video cameras. Silhouette images of the person
are extracted in each camera view through background subtraction.
The silhouettes form the input to the presented motion capture al-
gorithm. The motion parameters, i.e rigid body transformations
between adjacent body segments, are found at each time step in
an offline procedure by optimizing the overlap between the pro-
jected model silhouettes and the input image silhouettes. Using this
method, motion tracking becomes possible without any intrusion
into the recorded environment. The motion parameter estimation
is highly robust and can handle a broad range of motion. As will
be demonstrated, this enables the system to correctly recover even
such complex motion as ballet dance.

The same model is used for both motion capture and rendering.
During replay of the recorded sequence from an arbitrary view-
point, the image data from all input cameras is used to generate re-
alistic time-dependent surface textures. Both the rendering, as well
as the numerical computations involved in motion capture, make
effective use of programmable features on today’s graphics boards.

The rest of this paper proceeds with a review of related work and
a comparison of our method to relevant approaches in Sect. 2. In
Sect. 3 the acquisition environment used to record the multi-view
video sequences is described. The body model employed is ex-
plained thereafter in Sect. 4. The motion capture subsystem is ex-
plained in detail in Sect. 5. Free-viewpoint rendering and texture
generation are presented in Sect. 6, and Sect. 7 presents results ob-
tained using the system. The paper concludes in Sect. 8 with a
discussion of features and limitations of the presented system and
gives an outlook to future work.

2 Related Work

The review of previous work begins with a brief summary of re-
search in human motion capture presented in the Computer Vision
literature. Thereafter, relevant work on scene reconstruction and
free-viewpoint rendering in image-based Computer Graphics is dis-
cussed.

2.1 Human Motion Capture

Human Motion Capture is the process of acquiring the parame-
ters of human motion. Commercial human motion capture sys-
tems can be classified as mechanical, electromagnetic, or optical
systems [Menache 1995]. Video-based systems used in the indus-
try typically require the person to wear optical markers on the body.
The 3D marker locations are used to fit a kinematic skeleton to the
motion data [Silaghi et al. 1998]. During the acquisition of video
sequences for free-viewpoint video, no intrusion into the scene can
be tolerated.

In Computer Vision, algorithms for marker-free optical mo-
tion capture have been developed [Gavrila 1999]. Some methods
work only in 2D and represent the body by a probabilistic region
model [Wren et al. 1997] or a stick figure [Leung and Yang 1995].

More advanced algorithms employ a kinematic body model assem-
bled of simple shape primitives, such as cylinders [Rohr 1993], el-
lipsoids [Cheung et al. 2000], or superquadrics [Gavrila and Davis
1996]. Inverse kinematics approaches linearize around the non-
linear mapping from image to parameter space [Bregler and Malik
1998; Yonemoto et al. 2000] to compute model parameters directly.
Analysis-through-synthesis methods search optimal body parame-
ters that minimize the misalignment between image and projected
model [Martinez 1995]. To estimate the goodness-of-fit, features
such as image discontinuities are typically extracted from the video
frames [Gavrila and Davis 1996].

Recently, it has been shown that the real-time reconstruction of
object volumes from silhouette images is possible [Borovikov and
Davis 2000]. In [Cheung et al. 2000] an expectation-maximization-
like algorithm is used to fit an ellipsoidal model to human body
volumes in real-time. A force field exerted by the voxels is used
in [Luck and Small 2002] to fit a kinematic skeleton to volume data
at interactive frame rates. A combination of feature tracking and
volume reconstruction can be used to fit a multi-layer skeleton to
human motion data [Theobalt et al. 2002]. Other approaches run
off-line and fit a pre-defined kinematic model with triangular mesh
surface representation [Bottino and Laurentini 2001] to the volumes
by minimizing a distance metric or making use of Kalman Filter-
based tracking [Mikić et al. 2001]. Unfortunately, the employed
body models are too simple to be suitable for rendering. Additional
inaccuracies are introduced because the shape reconstructed from
image silhouettes is only a coarse approximation to the actual body
shape [Laurentini 1994].

Algorithms that compute motion parameters from silhouette im-
ages directly prevent computationally expensive scene reconstruc-
tion. In [Delamarre and Faugeras 1999], a body model assembled
of primitive shapes is aligned with input image silhouettes by means
of a force field exerted on the model edges in the image plane.

A sophisticated body model that represents surface deformations
using implicit surfaces is fitted to video data in [Plaenkers and Fua
2001] by using depth and silhouette information. Unfortunately,
stereo methods have stricter visibility requirements and have not
demonstrated that they are capable of handling as broad a range of
motion as our method. In [Allen et al. 2002], upper body deforma-
tions are modeled by interpolating between real body scans using a
displaced subdivision surface. This method produces highly realis-
tic geometric body models but the setup used for acquisition is very
complex and would be difficult to incorporate into a free-viewpoint
video system.

The method presented in this paper applies the same detailed
body model for motion capture as well as for rendering. Tracking
is performed by optimizing the overlap between the model silhou-
ette projection and input silhouette images in all camera views. The
algorithm is insensitive to inaccuracies in the silhouettes and does
not suffer from robustness problems as they commonly occur in
many feature-based motion capture algorithms. The fitting proce-
dure works in the image plane only, reconstruction of scene geom-
etry is not required. Many marker-free video-based motion capture
methods impose significant constraints on the allowed body pose
or the tractable direction of motion. In contrast, our system han-
dles a broad range of body gestures. Even fast motion is robustly
recovered. Furthermore, our motion capture algorithm can make
effective use of modern graphics processors by delegating the error
metric evaluation to the graphics board.

2.2 Image-Based Modeling and Rendering

The approaches described in the previous section deal primarily
with robust computation of human motion parameters. The ren-
dering of human motion from arbitrary viewpoints is not their main
objective. Quite different in focus is the field of image-based ren-
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dering and reconstruction, whose goal is to generate novel views of
a scene from real input images [Levoy and Hanrahan 1996].

The reconstruction of scene models from static images is com-
monly referred to as 3D photography [Curless and Seitz 2000].
Most algorithms falling into this category can also be applied to
dynamic scenes. A prominent class of geometry reconstruction al-
gorithms are shape-from-silhouette approaches. These methods de-
rive the geometry of a foreground object from its silhouette views
and can, at best, reconstruct the visual hull, a coarse approxima-
tion to the actual scene geometry [Laurentini 1994]. A polygonal
reconstruction of a person’s shape from multiple silhouettes at in-
teractive frame rates is shown in [Matusik et al. 2001]. The deriva-
tion of colored voxel models of dynamic scenes for free-viewpoint
rendering is also an option [Moezzi et al. 1997]. Multi-view video,
voxel-based reconstruction, and space-time interpolation along the
3D scene flow can be applied to create models of moving human
actors at intermediate time steps between consecutive sets of multi-
view video frames [Vedula et al. 2002]. In [Matusik et al. 2000]
novel views of a person’s visual hull are generated in real-time from
silhouette views by performing computations purely in the image
plane, thereby avoiding explicit 3D reconstruction.

In [Matsuyama and Takai 2002], a polygonal representation of
a person’s visual hull is computed and view-dependent texturing
is used to generate a naturalistic surface appearance in an off-line
process. A point-based representation of a person is reconstructed
from multiple cameras using image-based visual hulls in [Wuermlin
et al. 2002]. The point data is encoded using hierarchical space par-
titioning. Basic viewing functions for 3D video are also provided.
The application of stereo-algorithms to reconstruct the geometry
of dynamic scenes has also been considered. In [Narayanan et al.
1998], a dome of 51 cameras was used to reconstruct scene geom-
etry via dense stereo. The computation of geometry models of hu-
mans via multi-camera stereo and their transmission over a network
has also been a component of tele-presence applications [Mulligan
and Daniilidis 2000].

In contrast to the methods described above, our system employs
an a priori shape model that is adapted to the observed person’s
outline. Shape-from-silhouette methods exhibit visually disturbing
geometry errors in the form of phantom volumes or quantization
artifacts. These geometry artifacts can not occur in our system.
Furthermore, because graphics processors are optimized for poly-
gon visualization, a triangle based shape model is better suited for
rendering on common graphics hardware than a volumetric model.

Stereo approaches need a comparably high number of recording
cameras in order to reconstruct high quality scene models. In ad-
dition, because the correspondence problem in the image plane is
difficult to solve, these approaches lack robustness. In contrast, our
system produces high quality 3D representations with only eight
cameras.

Finally, the outputs of our system are particularly suitable for
transmission over bandwidth-limited network connections. For ev-
ery time instant, video frames and a small number of motion param-
eters would need to be transferred. The model geometry only needs
to be transmitted once and 2D video encoding for the textures can
easily be applied. The described system fits in the MPEG-4 stan-
dard [Koenen 2002] where triangle meshes are defined as media
objects and the texture information is encoded using state-of-the-
art 2D video codecs. To obtain visual quality similar to that of
a triangle mesh, volumetric reconstruction methods must generate
highly detailed point datasets for every time instant. Transmission
of these large datasets may not be feasible over standard network
connections.

3 Multi-View Video Recording

The video sequences used as input to our system are recorded in a
multi-view camera studio (Fig. 1). IEEE1394 cameras are placed
in a convergent setup around the center of the scene. The video
sequences used for this paper are recorded from static viewing po-
sitions arranged at approximately equal angles and distances around
the center of the room. The cameras are synchronized via an exter-
nal trigger, and pairs of cameras are controlled by an Athlon 1GHz
PC that streams the recorded frames directly to disk. Video frames
are recorded at a resolution of 320x240 at 15 fps or at 640x480 at 10
fps. The frame rate is fundamentally limited to 15 fps by the exter-
nal trigger. At the higher resolution additional I/O-overhead limits
the performance. Using Tsai’s algorithm [Tsai 1986] the cameras’
intrinsic and extrinsic parameters are determined, calibrating ev-
ery camera into a common global coordinate system. The lighting
conditions in the acquisition room are controlled. The influence
of external light sources on the set is minimized by black curtains
hung from each wall. All cameras are color-calibrated by adapting
their white color to a white reference object.

Figure 1: The figure on the left shows an example seven-camera
setup used in our system. The red spheres denote camera positions
and their viewing directions are shown as blue lines. The image on
the right shows one of the video cameras used.

3.1 Silhouette Extraction

The inputs to the motion parameter estimation are silhouette images
of the moving person from each camera perspective. The person in
the foreground is separated from the background by making use of
the color statistics of each background pixel (Fig. 2). From a se-
quence of video frames without a moving subject, the mean and
standard deviation of each background pixel in each color channel
are computed [Cheung et al. 2000]. If a pixel differs in at least one
color channel by more than an upper threshold from the background
distribution, it is classified as certainly belonging to the foreground.
If its difference from the background is smaller than a lower thresh-
old in all channels, the pixel is classified as certainly background.
All other pixels are considered potential shadow pixels.

Shadows cast by the person onto the environment can easily be
incorrectly classified as foreground. Image pixels in shadow show a
large difference in intensity but only a small difference in hue. Ex-
ploiting this observation, shadow pixels can be identified by exam-
ining the angular difference between background and foreground
hue for every pixel falling in between the lower and upper thresh-
old. The raw silhouettes exhibit isolated noisy pixels. Silhouette
quality is improved via subsequent morphological dilate and erode
operations [Jain et al. 1995].
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Figure 2: Comparison of an actual video frame (l) and the corre-
sponding silhouette (r).

4 Human Body Model

The body model used throughout the system is a generic model
consisting of a hierarchic arrangement of 16 body segments (head,
upper arm, torso etc.). The model’s kinematics are defined via an
underlying skeleton consisting of 17 joints connecting bone seg-
ments. Different joint parameterizations are used in different parts
of the skeleton. The root of the model located at the pelvis pro-
vides the degrees of freedom for global rotation and translation of
the body. Each limb, i.e. complete arm or leg, is parameterized
via four degrees of freedom. These are the position of the tip, i.e
wrist or ankle, in local coordinates, and the rotation around an axis
connecting root and tip (Fig. 3). This limb parameterization was
chosen because it is particularly suited for an efficient grid search
of its parameter space which we describe in Sect. 5.3. At every time
instant, 35 parameters are need to completely define a body pose.
The surface of each body segment is represented by a closed trian-
gle mesh. To accommodate a wide range of physical body types
we allow for deformation of each body segment. A separate 1D
Bézier spline is defined along each coordinate axis in the local seg-
ment coordinate system which defines non-uniform scaling. Fig. 3
shows the surface model (21422 triangles) and the underlying joint
structure, as well as the limb parameterization and a non-uniform
scaling example.

5 Marker-free Motion Capture

The motion capture subsystem tracks the body motion of the
recorded actor over time. After an initialization step, the body pose
parameters that maximize the overlap between projected model sil-
houettes and input camera silhouettes are estimated for every time
step.

5.1 Energy function

The error metric used to estimate the goodness of fit of the body
model with respect to the video frames computes a pixel-wise
exclusive-or between the image silhouette and the rendered model
silhouette in each input camera view (Fig. 4). The energy function
value is the sum of the non-zero pixels for every camera view after
this pixel-wise boolean operation [Lensch et al. 2001]. This error
metric is efficiently evaluated using commodity graphics hardware.
At the beginning of each time step, all input camera silhouette im-
ages are transferred to the graphics card. The pixel-wise XOR is
computed using the OpenGL stencil buffer. Each bit-plane of the
stencil buffer is used to render the result of the overlap computa-
tion for one input camera view. The result is transferred to the main
memory and the final error metric computed by summation on the
CPU. Using an 8-bit stencil buffer and the depth buffer, the error
metric for 8 camera views can be evaluated in graphics hardware
with only a single frame buffer read and write.

Figure 3: Surface model (l) and the underlying skeletal structure
(r). Spheres indicate joints and the different parameterizations used;
blue sphere - 3 DOF ball joint, green sphere - 1 DOF hinge joint,
red spheres (two per limb) - 4 DOF. The black/blue sphere indicates
the location of three joints, the root of the model and joints for the
upper and lower half of the body. The upper right figure shows the
parameterization of a limb, consisting of 3 DOF for the wrist po-
sition in local shoulder coordinates (shown in blue) and 1 DOF for
rotation around the blue axis. The lower right figure demonstrates
an exaggerated deformation of the arm that is possible to compute
during the initialization stage.

5.2 Initialization

The motion capture is initialized using a set of silhouette images
that show the human actor in an initialization pose. The ideal ini-
tialization pose is one in which both the arms and legs are bent, al-
lowing for simple identification of elbow and knee locations. From
these silhouettes, a set of scaling parameters as well as a set of
pose parameters is computed. In an automatic procedure, the ini-
tial global model position is computed by using a grid sampling
of the parameter space. The global model position is chosen that
produces the best fit according to the error measure described in
Sect. 5.1. The fit is improved by optimizing over the pose parame-
ters and joint scaling parameters in an iterative process that employs
the same error measure. In the first step of each iteration the scal-
ing parameters of the body segments are adjusted. These include,
for example, scaling parameters along bone axes for the limbs and
uniform scaling parameters for the torso. The scaling is done for
subparts of the body model individually using a Jacobian optimiza-
tion [Press et al. 1992]. This way, the joint locations are adapted to

Figure 4: The energy function drives the model fitting over a series
of time steps.
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fit to the person’s skeleton. The second step of each iteration uses
the rescaled body model and computes an estimate of the body pose
parameters by means of the procedure described in Sect. 5.3. These
two steps are iterated several times. In a last step, the Bézier param-
eters (Sect. 4) controlling non-uniform scaling of segment geome-
try are optimized in order to adapt the model shape to the observed
silhouette ever more closely. The combination of uniform and non-
uniform scaling enables adaptation to a large range of body types.

After initialization, all scaling parameters are fixed, and continu-
ous tracking is performed for all subsequent time steps. The motion
parameters are computed by applying a sequence of optimizations
in lower-dimensional parameter spaces.

5.3 Motion Parameter Estimation

The model parameters for each time instant are computed using a
non-linear minimization approach using the previously described
energy function. A straightforward approach would be to apply
Powell’s method [Press et al. 1992] to optimize over all degrees of
freedom in the model simultaneously. This simple strategy, how-
ever, exhibits some of the fundamental pitfalls that make global op-
timization infeasible. In the global case, the goal function reveals
many erroneous local minima. Fast movements between consec-
utive time frames are almost impossible to resolve correctly. For
every new time step, the optimization uses the result from the pre-
vious frame as a starting point. For fast moving body segments,
there will be no overlap between the starting model pose and the
current time frame, and no global minimum will be found.

A different problem arises if one limb moves very close to the
torso. In these cases, it is quite common for global minimization to
find a local minimum in which the limb penetrates the torso.

To make the tracking procedure robust against these problems
and to enable it to follow complex motions, we split the parameter
estimation into a sequence of optimizations on subparts of the body.

Temporal coherence is exploited during the computation of the
motion parameters. Starting from the body pose in the previous
time step, the global translation and rotation of the model root are
computed by using Powell’s method with the energy function de-
scribed in Sect. 5.1. The rotations of head and hip joints are then
independently computed using an identical optimization procedure.
With the main body aligned to the silhouettes, the poses of the
two arms and two legs can be found with independent optimiza-
tion steps. The final step in the sequence of optimizations is the
computation of hand and foot orientation by optimizing over their
local parameter space.

Due to the limb parameterization described in Sect. 4, fitting an
arm or leg is a four-dimensional optimization problem. Consider-
ing the arm as an example, the limb fitting employs the following
steps. The parameter space is efficiently constrained by applying
a grid search on the four-dimensional parameter domain. The grid
search samples the parameter space regularly and tests each sample
for representing a valid arm pose. A valid pose is defined by two
criteria. First, the wrist and the elbow must project into the image
silhouettes in every camera view. Second, the elbow and the wrist
must lie outside a bounding box defined around the torso segment
of the model. For all detected valid poses, the error function is eval-
uated, and the pose possessing the minimal error is used as starting
point for a downhill optimization procedure [Press et al. 1992]. The
arm pose at the current time instant is the result of the downhill op-
timization procedure. For all 4 arm parameters (Fig. 3), the search
space for valid poses is adapted to the difference in the parame-
ter values observed during the two preceding time steps, implicitly
including the assumption of a smooth arm motion into the fitting
procedure.

The grid search increases the robustness of the fitting process
significantly. The validity criterion for arm poses can be evaluated

much faster than the error function. Energy function computations
are not spent on poses which will not yield a good local minimum.
By taking the best valid pose as a starting point for the final down-
hill minimization, the likelihood of converging to a globally optimal
local minimum is significantly increased.

The overall silhouette-based motion parameter estimation has
several other advantages. The algorithm is not tied to any specific
body model. More complex parameterizations or different surface
representations could easily be used. Furthermore, the algorithm
easily scales to higher input image resolutions. Model fitting can be
applied to lower resolution versions of the video frames by means
of an image pyramid. On the whole, the fitting procedure exhibits
a high degree of robustness and efficiency and yet is comparably
simple.

6 Free-Viewpoint Rendering

After motion capture, the correct body pose is known for each time
frame of the input video sequence. To create free-viewpoint video,
a consistent surface texture for each time step is computed by com-
bining the information from all available camera views. This tex-
ture is created by blending the projection of all available camera
images onto the geometry [Buehler et al. 2001; Raskar and Low
2002]. In a preprocessing step, per-vertex weights are computed
that indicate the influence that a specific input camera view has at a
particular surface location. The precomputed weights are used dur-
ing rendering to composite the body texture using projective textur-
ing and per-pixel blending on the GPU in real-time.

Assuming that the observed human actor’s body surface exhibits
a Lambertian reflectance function, a consistent texture map is cre-
ated for every time step. In other contexts, view-dependent textur-
ing [Debevec et al. 1998] produces excellent results, but for non-
perfectly exact object geometry our approach obtains visually sig-
nificantly more pleasing results. View-dependent texturing exhibits
noticeable blending artifacts in parts where the model geometry
does not exactly correspond to the observed person’s body shape.
A time-dependent Lambertian texture produces far more visually
satisfying results and preserves the high spatial frequencies for all
possible viewpoints.

6.1 Texture Generation

Although our model tracking algorithm is quite robust, it is im-
possible for the model silhouettes to align perfectly with all input
silhouettes. Some mesh vertices will project into the background
in some camera views. To solve this problem, an intuitive solution
would be to locally deform the model boundary to fit the silhouette
boundary in all camera views. In our experiments we found that
the silhouette boundaries were too noisy to make deformation on a
pixel scale feasible.

As an alternative to deformation, we first remove one layer of
boundary pixels in each input silhouette that potentially exhibit spa-
tial aliasing artifacts. As a second step, each segmented input cam-
era view is augmented in the background region by assigning to
each adjacent background pixel the color value of the closest fore-
ground pixel over a small number of iterations. This guarantees that
every projected triangle spans only foreground color information.

Vertex weights are calculated based on the angle between the su-
face normal and viewing vector towards the input camera. For each
camera, vertex visibility is determined by rendering the geometric
model as a depth map and comparing the computed vertex depth
with the corresponding projected value stored in the depth map.
Slight misalignments between model geometry and the actual hu-
man body shape generate unsatisfactory results if the visibility cal-
culation is not slightly modified. Texture information from occlud-
ing body parts can project onto an incorrect body segment (Fig. 6).

573



Figure 5: The four smaller images show subsequent video frames. Note the fast arm movement. In the four larger images, the corresponding
poses of the body model are depicted as automatically estimated by the motion capture subsystem.

In the vicinity of occluded surface areas, another camera must be re-
lied on to provide correct texture information. We have developed a
novel approach that removes incorrect projections without resorting
to computationally expensive per-pixel classification techniques.

The simple per-vertex visibility computation for each input cam-
era is extended by additionally computing visibility from several
camera views slightly displaced in the image plane. A vertex is
classified as visible if and only if it is visible in both the original
and displaced views.

This has the effect of removing the visibility of vertices that
project into the vicinity of occluding boundaries in each camera
view. Consequently, information from other camera images is used
to generate a correct texture in these locations. Since a vertex is

Figure 6: Incorrect texture projection (shown in red) is solved
through a modified visibility calculation.

potentially visible from several camera views, per-vertex blending
weights are computed for correctly compositing the surface texture.

A simple way to compute these weights would be to assign to
each camera view a weight defined by

ωi =
1

Θi
(1)

where ωi is the weight assigned to camera view i and Θi is the angle
between the vertex normal and the viewing vector towards camera
i. The drawback of this method is that fine details in the original
camera views are blurred in the composite texture. To preserve fine
details we employ a different weighting function to compute the
per-vertex weight for each input camera ωi

′:

ω ′
i =

1
(max

i
(ωi)+1−ωi)α (2)

This weighting function assigns a proportionally high weight to a
camera for which the angle between viewing vector and vertex nor-
mal is small. These weights are then normalized so that their sum is
one. The sharpness value α controls the degree to which the largest
weight is exaggerated. In the limit, as α → ∞, only the best cam-
era is chosen for texture generation. Subtle details in the surface
texture such as wrinkles and facial expressions are well preserved
using this weighting scheme.

Figure 7: Capturing a smile: Texture detail is preserved. Block
artifacts are due to the limited camera resolution.

6.2 Real-Time Rendering

The scene can be visualized in real-time with interactive viewpoint
manipulation. At each time step, the renderer is provided with pa-
rameters of the geometric model, per-vertex texture weights, and
images from the different input views. Consumer-level graphics
hardware can be used to generate texture coordinates and blend the
textures together based on their corresponding weights. Our viewer
is implemented on NVIDIA’s GeForce3TM rendering architecture.
With four texturing units, one rendering pass is needed for each
set of four cameras. The texture weights are encoded in the pri-
mary color channel and blended using the register combiner exten-
sion [Kilgard 2002].

7 Results

The proposed system has been tested on several multi-view video
streams including a male ballet dancer and a second test subject
(Fig. 10). Ballet dance performances are ideal test cases, as they ex-
hibit rapid, complex motion. We chose to record sequences at a res-
olution of 320x240 to achieve the maximal frame rate. The motion
capture subsystem demonstrates that it is capable of robustly fol-
lowing human motion involving fast arm motion, complex twisted
poses of the extremities, and full body turns. Certainly, there are ex-
treme body poses such as the fetal position that cannot be reliably
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tracked due to insufficient visibility. To our knowledge, no non-
intrusive system has demonstrated it is able to track such extreme
positions.

As illustrated in Fig. 5 the complex body poses are correctly re-
covered by the silhouette-based motion capture algorithm. An im-
pression of the visual quality of the rendered actor can be obtained
from Fig. 8. In each picture, the smaller original input images can
be compared to our rendering results from the same camera per-
spective. This comparison shows that the original appearance of
the dancer is nicely reproduced. In Fig. 9 complex body poses are
textured and rendered from several novel views.

Fig. 6 depicts a problematic pose for texture generation, since in
some of the input views, extremities occlude more distant parts of
the body. The texture projection artifacts are effectively removed
by the method described in Sect. 6.1. Subtle texture details in the
clothes and the facial expression are well-preserved (Fig. 7). In
our current implementation, model fitting time is dependent on the
speed of the actor’s motions. For slow motions, the limb parame-
ter grid search can be confined to a narrow search space, and dur-
ing optimization using Powell’s method, a minimum is found very
quickly. We measured fitting times for two sets of motion sequences
of the male ballet dancer. In set A (dancer wears blue shirt) the mo-
tion is comparably slower to that of set B (dancer wears red “15”
shirt). For set A the minimum fitting time is 1.46s with an average
fitting time of 6.81s per time step. For set B the smallest fitting
time is 3.46s with an average of 11.73s. Due to the efficient imple-
mentation of the energy function in graphics hardware, up to 105
energy function evaluations can be computed per second. The sys-
tem scales well to a larger number of cameras. For tracking, each
set of 8 cameras requires one additional memory to framebuffer
read/write cycle. During rendering, on a GeForce3TM one pass is
needed for every four cameras. Graphics chips with a higher num-
ber of texture units can significantly improve the rendering speed.
We believe, though, that we have demonstrated that the presented
system is capable of producing high quality results even with a com-
parably low number of cameras and that a higher number of cam-
eras is not required. The free-viewpoint renderer can replay video
scenes at the original captured frame rate of 15 fps. The maximal
possible frame rate is significantly higher. Standard TV frame rate
of 30 fps can easily be attained.

8 Discussion and Future Work

We have presented a new approach to jointly estimate and render
full human body motion using a handful of synchronized video
camera sequences as input. The resulting system runs on a stan-
dard PC with off-the-shelf graphics hardware and is suitable for
consumer-market desktop applications. Interactive rendering frame
rate, detailed body geometry, robust motion estimation, and high-
quality, time-varying texture yield a realistic, natural impression
of the actor. The system has been designed with free-viewpoint
video as one possible application in mind. The actor’s model can
be set into computer-generated or recorded 3-D environments to be
viewed from any arbitrary viewpoint. In addition, the estimated
motion parameters can be used to animate the model of a different
actor or creature.

Two major limitations currently still restrict our system. First,
the motion estimation process is done off-line, making the system
currently unsuitable for live broadcast applications. A faster opti-
mization scheme that makes use of hierarchical as well as divide-
and-conquer strategies may be able to sufficiently speed up the es-
timation step for real-time performance. One possible implemen-
tation of this idea in the future will be to distribute the optimiza-
tion for separate sub-parts of the body to different GPUs. Em-
ploying this strategy and using next generation hardware, we be-
lieve that motion capture can also be achieved in real-time. Second,

for the sake of high-quality texture, Lambertian reflection proper-
ties are implicitly assumed when generating one consistent texture
from the input video images. While we have experimentally found
this to be a valid approximation for skin and most garments on a
complete-body scale, replicating view-dependent reflection effects
may give an even more realistic impression. Unfortunately, ob-
ject geometry must be known exactly for unblurred view-dependent
texturing [Debevec et al. 1998] or estimating the Bidirectional Tex-
ture Function (BTF) [Dana et al. 1999]. By augmenting the de-
scribed model-based motion capture with multi-view 3D recon-
struction techniques, a reflection-consistent body surface may be
determined that allows high-quality view-dependent texture map-
ping. Other areas of future research include making use of known
lighting conditions for relighting, the extrapolation of texture for
body regions that are momentarily not visible in any camera view,
and the consideration of loose garments.
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Figure 9: Novel viewpoints are realistically synthesized. Two distinct time instants are shown on the left and right with input images above
and novel views below.

Figure 10: Free-viewpoint video allows the viewer to experience karate kicks in a whole new light (top row). Conventional video systems
cannot offer moving viewpoints of scenes frozen in time. However, with our free-viewpoint video system freeze-and-rotate camera shots of
instable body poses are possible (bottom row).
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