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Abstract

We propose an approach for learning visual models of

object categories in an unsupervised manner in which we

first build a large-scale complex network which captures

the interactions of all unit visual features across the entire

training set and we infer information, such as which fea-

tures are in which categories, directly from the graph by

using link analysis techniques. The link analysis techniques

are based on well-established graph mining techniques used

in diverse applications such as WWW, bioinformatics, and

social networks. The techniques operate directly on the pat-

terns of connections between features in the graph rather

than on statistical properties, e.g., from clustering in feature

space. We argue that the resulting techniques are simpler,

and we show that they perform similarly or better compared

to state of the art techniques on common data sets. We also

show results on more challenging data sets than those that

have been used in prior work on unsupervised modeling.

1. Introduction

1.1. Overview

Unsupervised visual modeling of object categories in-

volves the extraction of parts (regions or sets of features)

from unlabeled images corresponding to different, unknown

object categories. This problem, typically addressed with

statistical machine leaning tools, remains one of the most

challenging visual perception problems. Here, we propose

a novel representation and formulation of the problem in-

spired by the tools commonly used for the analysis of com-

plex networks such as the WWW and social networks.

Specifically, we construct a single large graph which

captures the interactions of all visual features in the training

set, called the visual similarity network. The basic idea of

the approach is that (1) if a feature i has significant number

of consistent matching from others, then the feature i should

be important and (2) if feature i from one image matches

features in the other images that are mostly the same as

those matched by another feature j, then i and j are more

likely to belong to the same object. This type of reasoning

relies only on the configuration of the graph of features (i.e.

which feature matches which features in the entire training

set) and powerful link analysis techniques can be brought

to bear to mine global matching consistency from the graph

for the inference of visual models.

Our approach is analogous to the Web search engines,

which are successful examples of extracting information by

analyzing the interactions of data elements with each other.

In this case, despite the large amount of data, it is possible

to retrieve accurate information within a very short time by

analyzing the interactions between the web pages (specifi-

cally, which page links which other pages) without explic-

itly describing their content. In particular, we will extract

visual models from unlabeled data by using primarily the

PageRank [5] and the vertex similarity algorithms [4] as

link analysis techniques.

Because we need to represent in principle all pairwise re-

lations between all visual features, the representation could

rapidly grow to become intractable. In practice, however,

the resulting representation is compact and efficient because

the graphs involved are very sparse and, like other complex

networks such as those found in social networks, WWW,

or epidemiology, the graph used in our approach roughly

follows the power law (i.e. it is a scale-free network) [1].

In other words, in practice, there is some small number of

features acting as hubs compared to the total number of

features, and most features are less important. Intuitively,

when we gather images of object classes and generate a

graph of all the features, there is a small number of class

representative visual information, and most of the features

are likely to be irrelevant (such as background) to the dis-

covery of category models. Therefore, by applying link

analysis techniques, we can quickly filter out large amount

of non-essential visual information. Another reason for the

efficiency of the approach is that, once the network is con-

structed, we do not need to access the feature data. All in-

ference for unsupervised modeling is based on link analysis

of the graph, and thus the computation is quite fast.

1



1.2. Related Work

Our approach is unique in describing all of the visual

interactions explicitly in a single view, by formulating low-

level visual information as a complex network and by ap-

plying link analysis techniques for visual modeling. Here,

we introduce some previous work which is closely related

to ours.

A common way to approach the unsupervised modeling

problem is to first quantize the input into a discrete set of

words, which are then used for extracting groups of features

corresponding to categories [8, 9, 10, 21]. However, un-

like the text analysis domain from which it originated, this

identification process is not straightforward. Since, unlike

words in text, there are no natural boundaries, orders, and

clear semantic meaning of visual words, the definition of

visual words and their assignments to instances of local fea-

tures are in themselves challenging. For this reason, there

is no dominant methods for dictionary formation (e.g. hier-

archical agglomerative clustering [19] or k-means [6, 21]),

the optimal selection of dictionary sizes, and the assignment

of codewords to each feature instance (e.g. soft or hard as-

signment). In contrast, we do not try to identify each vi-

sual entity (i.e. the definition and assignment to codewords)

but focus on its interactions with others. In this approach,

the data describing each feature, such as its position, ori-

entation, scale, and descriptor, is used only for defining its

relationship with other features.

Grauman and Darrell [11] applied the pyramid match

kernels to unsupervised modeling. Their work is similar

to ours in that they use image-based matching and spectral

clustering for final classification results. However, their al-

gorithm relies on the results of image matching but it does

not take advantage of explicit interactions between individ-

ual low-level features. We compare experimentally with

their approach.

Todorovic and Ahuja [22] proposed an unsupervised

modeling method based on tree matching. Segmented re-

gions are represented as nodes in a tree, inference of models

is performed by tree matching. Although the tree structure

can support complex hierarchical relationships, the com-

plexity of the approach is on the order of the fourth power

of the number of nodes.

Data mining and link analysis techniques have been used

in computer vision tasks. Quack et al.’s work [19] applies

well-known data mining techniques, termed frequent item-

sets and association rules, to the feature selection. How-

ever, their work differs from ours in that it requires bound-

ing box annotations, do not use any networks, and only

applied two-class cases (positive and negative image sets).

Pan et al.’s work [18] applies the PageRank algorithm to

image data. Their task is auto-captioning in which, given a

novel image, the most probable caption words are assigned

by using the PageRank algorithm. However, their work re-

quires labeled training sets (i.e. caption words should be an-

notated to the segmented regions in training images). Also,

their task is a labeling problem rather than a visual percep-

tion task.

2. Construction of Visual Similarity Networks

The basic representation on which we will operate is a

weighted directed graph, termed the visual similarity net-

work (VSN). The nodes of the VSN are the features ex-

tracted from all of the training images, and the edges of the

graph link features that have been matched across images.

We denote the set of training images by I =
{Ia}a=1,...,m, from which we wish to extract K categories.

We denote image indices by a, b, . . . and feature indices by

i, j, . . .. The VSN is a graph G = (V, E, W ), where V is

the set of vertices, E is the set of edges, and W is the set of

edge weights. We also denote the adjacency matrix of the

VSN by M . Each node in V is denoted by ai, representing

the i-th feature in image Ia. We denote the total number of

features by n, and the number of features in image a by na.

In general, a node in the VSN can be any unit of local

visual information. Here, we use the standard Harris-Affine

interest point detector [17] and the SIFT descriptor [16].

That is, all affine covariant regions extracted from all the

training images form the set of nodes (V ) of the VSN. We

now describe the procedure used to form the links in E, and

finally the way the weights in W are computed.

2.1. Establishing edges in the VSN

The links are established by finding matches between

features in different images. In our case, we apply the spec-

tral matching of [13, 14] to each pair of images (Ia, Ib).
This approach combines matching based on local data with

geometric consistency constraints by finding a combination

of correspondences that is globally most consistent, based

on pairwise relations between features. The algorithm re-

quires an initial set of potential correspondences based on

local appearance, which we obtain by using the L2 dis-

tance between SIFT descriptors. The second-order geomet-

ric affinity is calculated by the over-complete set of trans-

lation invariant geometric relations proposed in [15]. The

advantage of this particular matching technique is that it is

fast and simple and it has been shown to have good limit

properties in the context of inference in problems defined

by first- and second-order potentials. Other similar match-

ing techniques such as the deformable matching of [2] or

pyramid matching of [11] could be used as well.

After matching all the pairs of images, each correspon-

dence between features ai and bj forms a new edge between

the two corresponding nodes in V : e = (ai, bj). It is impor-

tant to note that, at this stage, we do not require the match-

ing to be accurate. The resulting graph may be quite noisy,

especially because of extra edges between images that do

not contain any common objects. The link analysis algo-

rithm will be responsible for dealing with the (possibly large



number of) incorrect correspondences. In fact, we do not

want the matching to be too strict, in which case it might

find very few correspondences which will not be enough to

populate the graph. To further relax the matching, we allow

many-to-many correspondences between a pair of images,

by iterating the one-to-one algorithm of [13]. Also, we use a

fixed model of the pairwise geometric relations, rather than

a more accurate model learned from training data as in [15].

The final output of this process is a set of potential corre-

spondences E.

The resulting graph is not necessarily symmetric: If Ia

(the query image) is matched to Ib (the reference image),

then the initial correspondences are obtained by retrieving

the k-nearest features bj to each feature ai (by using the

L2 distance between SIFT descriptors). If the order of the

query and reference images is reversed, we will instead re-

trieve the k-nearest features to each feature in Ib, which will

yield a different set of initial correspondences. As a result,

the edge (ai, bj) does not necessarily exist if the (bj, ai) ex-

ists. If they both exist, their weights (described in the next

section) will be different in general.

Figure 1 shows an example of edge construction by com-

paring the same image on the left to two different images

from different object classes on the right. There is a sub-

stantial number of wrong correspondences in the bottom

pair because the object classes are different between the two

images (i.e. an giraffe on the left and a car on the right.)

However, if the matching behavior is consistent, the link

analysis techniques introduced below will be able to extract

the major trends from noisy correspondences.

2.2. Computing the edge weights

The weight we of the edge e = (ai, bj) should reflect

how consistent that correspondence is with all the other cor-

respondences obtained in matching Ia and Ib. A higher

weight would indicate more confidence in the correspon-

dence, meaning that many other correspondences would

agree with it. In order to describe how we is computed,

we need to look more closely at the spectral matching ap-

proach [13]: For the matching of a pair of images, a ma-

trix Q is first created with one row and one column for

each potential correspondences (ai, bj). Here, we abbre-

viate the notation (ai, bj) to simply ij since we are dealing

with a single pair of images Ia and Ib in this paragraph.

Q(ij, i′j′) contains the pairwise geometric consistency be-

tween correspondences ij and i′j′ such that the more defor-

mation is needed to map the pair ij to the pair i′j′, the lower

Q(ij, i′j′) is. The solution is found essentially by comput-

ing the principal eigenvector of Q and binarizing it by fol-

lowing the procedure described in [13]. We denote by C∗

the set of correspondences that are selected at the end of the

matching. An estimate of the confidence of (ai, bj) ∈ C∗

is given by: Cij =
∑

i′j′∈C∗ Q(ij, i′j′)/|C∗|. Cij mea-

sures how well the correspondence ij agrees with all the

Figure 1. An example of link generation on two pairs of images.

The features are matched by using a liberal spectral matcher. The

jet colormap is used from red (strong) to blue (weak geometric

consistency). (These figures are best viewed in color.)

other correspondences. In practice, Q is constructed such

that 0 ≤ C ≤ 1 for all the correspondences.

One problem is that we cannot simply set wij to be equal

to Cij since we do not know in advance what, in absolute

terms, is a good value for C. To address this problem, we

take into account the histogram of the confidence values

and the rank ordering of each Cij rather than the absolute

values. More precisely, let {tl}, l = 1, . . . , Nt be a set of

thresholds such that t1 < . . . < tNt
. We define Cl as the set

of surviving correspondences ij such that Cij > tl. Clearly,

CNt
⊂ CNt−1, . . . ,⊂ C1 ⊂ C∗. In practice, we use five

thresholds regularly spaced between 0.8 and 0.4. For exam-

ple, in Fig.1, the red features belong to a subset of strongly

geometrically consistent features for t = 0.8 while the blue

ones have weaker consistency for t = 0.4.

Finally, the weight we of the edge e = (ai, bj) is defined

as:

we =
1

na

Nt
∑

l=1

Sl1Cl
(ij) (1)

where Sl is the normalized score Sl =
∑

ij∈Cl
Cij

|Cl|
which

measures the global consistency of the set of correspon-

dences that are over a particular threshold. 1Cl
(ij) is the

value of the indicator function which is defined by 1 if the

correspondence ij is in the set Cl. The division by na is in-

tended for the normalization of irregular number of features

in each image. Intuitively, ten correspondences from an im-

age with a total of 50 features should be weighted more than

ten votes by an image with 100 features.

Consequently, by iterating the matches between all pairs

of image, we obtain a sparse n × n matrix M (i.e. the ad-

jacency matrix of the VSN G) where M(ai, bj) is the value

of the weight we of the edge e = (ai, bj).



3. Inference of Object Models from Networks

3.1. Ranking of Visual Information

Since we use all the features in the training images, and

since the links are very noisy, we need a mechanism to esti-

mate the relative importance of nodes in the graph. This can

be done by treating the weights associated with the links in

the VSN as votes for the importance cast by other nodes.

Even though there will be a lot of false links from differ-

ent classes or even background, they are highly likely to

have higher variations in those linking behaviors than the

links between the nodes of the same objects, which will vote

more consistently. In order words, hubs in a given class are

likely to be formed through consistent matches with fea-

tures in the same class.

Well-known ranking algorithms such as PageRank [5]

and Kleinberg’s HITS algorithms [12] can estimate the

ranked importance of nodes in a graph using only the graph

connectivity. In our experiments, PageRank slightly outper-

forms the Kleinberg’s HITS and it is the one that we use as

the baseline algorithm. In its most general form, the rank-

ing algorithm generates the n × 1 PageRank vector P by

solving the equation [5]:

P = (1 − α)(M + D)P + αv, (2)

where M is the weight matrix of the graph (the VSN in our

case), α is a constant close to zero (in all of our experiments

α = 0.1), v is the transport vector (= [ 1

n
]n×1, uniform

probability distribution over all nodes), and D = vdT (d
is the n-dimensional indicator vector identifying the nodes

with outdegree 0). Intuitively, the definition of ranking can

be viewed recursively in the sense that components of P
with high values are nodes connected to many nodes with

high values.

We obtain the PageRank vector Pa for each image Ia in I

by considering the portion of the VSN M obtained by con-

sidering the links between the nodes ai and all of the other

nodes from the other images. In other words, when com-

puting Pa, we use the modified Ma for Eq.2 by enforcing

Mij = 0 if i /∈ Ia and j /∈ Ia. This eliminates the inter-

actions between the features irrelevant of the image Ia for

the computation of Pa. Intuitively, a large Pa(i) means (1)

if i ∈ Ia, i is an relatively important feature in the image Ia

(i.e. this information is valuable for localization of an object

in the image) or (2) if i /∈ Ia, i is an highly relevant feature

with respect to Ia (i.e. useful to clustering of the images

according to object classes).

3.2. Structural similarity

In constructing the edges of the VSN (Section 2.1), we

already consider two types of similarities, appearance simi-

larity and geometric consistency. However, once we have a

global representation of all the interactions between the fea-

tures, we can infer another type of similarity termed struc-

Figure 2. An example of structural similarity in a small part of the

VSN G. Each link with its weight represents its local similarity

measure (appearance and geometric consistency). The structural

similarity captures the degree of similarity of the link structures of

two nodes. The structural similarity is high if the two nodes match

similar nodes like the wheel patches in this example.

tural similarity. The underlying observation is that similar

nodes are highly likely to exhibit similar link structures in

the graph. This observation is illustrated in Figure 2, in

which both node i and node j are wheel features. Both

nodes are highly likely to point out to and to be pointed to

similar sets of features (e.g., other wheel nodes), and at the

same time both are highly unlikely to be linked to the same

set of entities from different objects or background clutters.

Brondel et al. propose an algorithm which provides a

generalized method to compute structural similarities be-

tween vertices of two directed graphs by using only link

analysis [4]. The simplified version of the algorithm which

we use here is the same as the algorithm used for automatic

discovery of synonyms in a dictionary [4]. Given the VSN

G, the neighborhood graph Gai of a node ai is the subgraph

of G whose vertices are pointed to by ai or are pointing to

ai. Let Mai be the adjacency matrix of Gai. Mai is of di-

mension Nai × Nai, where Nai is the number of nodes in

Gai.

The algorithm of [4] defines the central score which is

the similarity scores between the vertexes of Gai and the

vertex 2 of the path graph of length 3 of Eq.3. B is the

incident matrix of the path graph. Intuitively, if a vertex bj

∈ Gai has a high central score, then bj and ai are likely

synonyms such that they contain the same words in their

definitions and at the same time they are included in the

definitions of the same words.

Operationally, the structural similarity values between

Gai and the graph of Eq.3 are computed by iterating Eq.4.

1 → 2 → 3, B =





0 1 0
0 0 1
0 0 0



 . (3)

Uk+1 =
BUkMT

ai + BT UkMai

‖BUkMT
ai + BT UkMai‖F

, (4)



where Uk is a 3×Nai matrix, initially set to 1, and ‖ · ‖F is

the Frobenius norm. Upon convergence, Uai = limk→∞ Uk

has the property that Uai(2, bj) is the structural similarity

value for each node bj in the neighborhood of ai [4]. In

other words, a large value Uai(2, bj) indicates that bj and

ai share a lot of common nodes both in the incoming and

outgoing directions.

This structural similarity algorithm is applied to each

node ai independently and the resulting similarity values

are combined in a single n×n matrix Z , such that Z(ai, bj)
is the structural similarity of node bj to ai: Z(ai, bj) =
Uai(2, bj). Although n can be large, Z is very sparse in

practice. We row-normalize Z to make the sum of vertex

similarities of all the other features with respect to a feature

to 1.

4. Unsupervised Modeling

From the link analysis described above, we have now

two pieces of information: the PageRank vectors Pa for all

the images Ia ∈ I, which characterize how strongly the fea-

tures of each image is related to all the other features from

the other images, and the vertex similarity matrix Z , which

characterizes how structurally similar the nodes are with re-

spect to each other. We will now use these two pieces of in-

formation in a two-step approach to unsupervised modeling.

First, we will estimate which image belongs to which cate-

gory. Roughly speaking, this step is the counterpart of the

topic discovery step used in other approaches [21]. Second,

for each category, we will estimate which features from the

training images are relevant to that category. This is similar

to the localization step used in other approaches with the

critical difference that we do not attempt any clustering of

the original features; we use directly the original features

and we merely assess which feature is important for a given

category. We argue that this can be done in large part by di-

rect link analysis of the VSN without any clustering, statis-

tical modeling, or other difficult manipulation of the actual

feature values.

4.1. Category discovery

Our first objective is to partition I into K groups corre-

sponding to the K categories. Of course, this is not optimal

because it prevents the correct handling of images contain-

ing multiple categories (a case that is generally not handled

by unsupervised techniques) and because it would be bet-

ter to not make a hard decision on the partition of I before

the next step. However, we feel that this is still an effective

approach for demonstrating the feasibility of using the link

analysis techniques for this problem.

The basic idea is to combine the m PageRank vector Pa

and the n×n matrix Z into a single m×m affinity matrix A.

A(a, b) measures the affinity of Ib with respect to Ia and by

combining 1) the total sum of Pa(bj) for the features in Ib,

and 2) the total sum of the Pa(ai) of the features in Ia dis-

Figure 3. The raw affinity matrix A computed from 600 images of

6 categories of the Caltech-101 dataset (left) and the same matrix

after retaining the 10 log(m) largest values for each node (right).

The rows and columns have been ordered so that images in the

same category are grouped together.

tributed proportionally to vertex similarities. A(a, b) takes

into account the entire graph structure to evaluate how con-

fident we are that Ia and Ib contain a consistent collection

of features corresponding to the same category. Intuitively,

if they do, then they should be linked to similar groups of

images, and many of their features should be structurally

similar. In practice, A is computed as:

A(a, b) =
∑

bj∈Ib

Pa(bj) +
∑

ai∈Ia,bj∈Ib

Pa(ai)Z(ai, bj), (5)

for all pairs of images Ia and Ib. The groups of images cor-

responding to the K categories are estimated by partitioning

A by using spectral clustering. Following [23], we use the

Shi and Malik’s Normalized spectral clustering [20] on the

k-nearest neighbor graph. The k-nearest neighbor graph is

easy to work with because it is a sparse matrix, and known

to be less sensitive parameter settings [23]. In practice, we

use k = 10 log(m) since [23] recommends that k be chosen

in the order of log(m). After measuring the accuracy for

different values of k, the variation of performance is less

than 2% over the experiments reported below. This means

that the matrix has strongly separated blocks in practice and

that, therefore, the affinity measure is effective at separating

the different categories. Figure 3 shows the affinity matrix

computed from one dataset. This example shows that the

groups of images corresponding to different categories are

clearly separated by using the definition of affinity above.

4.2. Localization

The objective of the localization step is to establish

which features are relevant to each category. To do this,

we first apply again the page rank algorithm, but this time

to all the features in each category. More precisely, for each

class c, we compute the page rank matrix Pc based on Eq. 2,

replacing M by Mc, that is, the graph matrix obtained by

using only the features from images in category c. The rel-

ative importance of each feature ai from an image Ia in



category c should be estimated by combining its own rank,

Pc(ai) with the sum of all the other features’ rank, weighted

by their structural similarity to ai, so that the importance of

a feature will increase if many other features agree with it:

Ic(ai) = Pc(ai) +
∑

bj∈c

Pc(bj)Z(bj , ai). (6)

Ic(ai) can be interpreted as a confidence measure that each

feature ai belongs to the class c. As the last final local-

ization step, we select the features whose importance are

close enough to the maximum in the image: Ic(ai) ≥
ρ × maxai

Ic(ai). Different operating points are obtained

by varying ρ as shown in the localization experiments be-

low. All the examplar results shown later in this paper used

ρ = 0.8 to be consistent with the top 20% rule used in [19].

5. Experiments

The input of our algorithm is a set of m unlabeled im-

ages with a single piece of information (i.e. the number of

object categories K). The outputs are the classification of

images according to object classes, and the ranked impor-

tance of all features with respect to their object categories,

from which we can easily estimate most probable locations

of the objects in the images.

We evaluate the proposed unsupervised modeling

method using two different datasets, which are Caltech101-

dataset [7] and TUD/ETHZ dataset 1{ETHZ Giraffes, TUD

Motorbikes, TUD Cars}. By following the experimental

setup proposed by Grauman and Darrell [11], we iterate

the same experiment ten times, in which 100 and 75 im-

ages per object are randomly picked in each object class for

the Caltech-101 and TUD/ETHZ dataset, respectively. We

select only 75 images for the TUD/ETHZ experiments be-

cause there are only 83 images for the giraffe class.

5.1. Category discovery

For Caltech-101, we selected six object classes which

have more than 100 training images – {airplane, rear cars,

faces, motorbikes, watches, ketches}. We measure how well

the unlabeled training images are clustered according to

their categories by measuring the agreement of topic discov-

ery with ground truth labels. Table.1 shows the confusion

matrices for Caltech-101 classes. As shown in the results,

our performance is competitive compared to previous work.

In the case of four object classes, our results achieve 98.55%

success ratio (compared to 98% in [21]). We outperform

the Grauman and Darrell [11]’s method (86%) by more

than 10% by using the same experimental as theirs. While

related prior work generally goes up to four classes, we

show that we can increase the number of classes with only

1The TUD Motorbikes and Cars dataset is available at

http://www.pascal-network.org/challenges/VOC/ and ETHZ Giraffes

at http://www.vision.ee.ethz.ch/datasets.

A C F M

A 98.4±0.82 1.0±0.9 0.1±0.3 0.5±0.7

C 0.2±0.4 99.8±0.4 0.0 0.0

F 1.9±1.3 0.1±0.3 98.0±1.2 0.0

M 1.4±1.2 0.6±1.0 0.0 98.0±1.5

A C F M W

A 98.2±1.2 0.7±0.8 0.1±0.3 0.8±0.4 0.2±0.4

C 0.6±0.7 99.3±0.8 0.0 0.0 0.1±0.3

F 2.2±1.3 0.1±0.3 96.2±1.7 0.0 1.5±1.5

M 1.3±0.8 0.9±1.1 0.0 97.5±1.6 0.3±0.7

W 2.7±2.1 0.8±0.4 0.0 1.2±1.0 95.3±1.9

A C F M W K

A 94.5±4.2 0.5±0.7 0.0 0.5±0.5 0.3±0.5 4.2±3.8

C 1.1±2.2 97.1±3.2 0.0 0.0 0.0 1.8±2.1

F 1.5±1.2 0.0 95.6±2.5 0.0 1.8±1.8 1.1±1.0

M 1.4±1.6 0.4±0.7 0.0 93.5±3.3 0.1±0.3 4.6±3.3

W 2.2±1.0 0.3±0.5 0.0 0.3±0.7 93.4±2.7 3.8±2.3

K 1.5±1.2 0.0 0.1±0.3 0.0 0.0 98.4±1.3

Table 1. Confusion tables for the Caltech-101 data set for increas-

ing number of objects from four to six. The means and standard

deviations of 10 runs for each are shown. The modeling accuracies

(i.e. the averages of the diagonals) of four to six object categories

are 98.55% 97.30%, 95.42%, respectively. (A:Airplanes, C: Cars,

F: Faces, M: Motorbikes, W: Watches, K: Ketches)

M C G

M 93.3±2.7 0.0 6.7±2.7

C 4.8±2.6 95.2±2.6 0.0

G 2.0±1.1 0.1±0.4 97.9±1.4

Table 2. Confusion tables for the TUD/ETHZ shape dataset. The

means and standard deviation values of 10 runs for each are shown.

The classification accuracies (i.e. the averages of the diagonals) are

95.47%. (M:Motorbikes, C: Cars, G: Giraffes)

a slow degradation in performance: 97.30% and 95.42%

for five and six object classes, respectively. Also, for the

TUD/ETHZ dataset, our method achieved 95.47% classifi-

cation success ratio. Unlike the Caltech-101, this dataset

has a lot of class variations and clutter in the background.

5.2. Localization

Localization is in general harder to measure and, in

fact, most prior work evaluates classification and local-

ization performance in separate experiments. For exam-

ple, [6, 21, 22] designed simpler experimental setups for

evaluating localization performance such as limiting the ex-

periments to two category cases. Here, we evaluate the lo-

calization on the same setup as we used for evaluating clas-

sification, including up to six categories in the training set.

We use two metrics proposed by [19] - bounding box hit

rates (BBHR) and false positive rates (FPR). Some papers

use the segmentation ratios of intersections of detected re-

gions and ground truth [6, 21] for the localization. But we

feel BBHR and FPR would be better because we use Harris-

Affine interest regions as our unit visual information instead

of segmented patches that are more amenable to pixel-wise



Figure 4. BBHR-FPR plots for Caltech-101(Left) and TUD/

ETHZ (Right) dataset.

error. The bounding box hit (BBH) number is incremented

for every ground truth box in which more than h features

fall. We use h = 5, following [19]. The BBHR is the

number of BBH divided by the total number of object in-

stances in the dataset (BBHR=1 for perfect localization).

The FPR is defined as the number of selected features lying

outside the bounding box, divided by the total number of

selected features (FPR=0 for perfect localization). In gen-

eral, the FPR is a fairly severe measure because it counts

the number of features without accounting for their spatial

extent. For example, 10 misclassified features may give a

high FPR even though they are clustered in a very small re-

gion. Unfortunately, for feature-based approaches, there is

no absolutely fair measure, unlike patch-based methods for

which a pixelwise error rate can be defined easily.

As proposed in [19], we generate BBHR-FPR curves by

varying the relative threshold ρ (Fig.4). The plots show

that our methods achieve reasonably low FPRs across the

BBHRs. For some objects of caltech-101 dataset such as

watch and motorbikes, the FPRs are fairly low since the ob-

jects are generally quite large in the image and only one

object instance exist in most cases. The principal remain-

ing source of errors is that, although our unsupervised clas-

sification is quite accurate, the misclassified images might

produce the wrong localization result. For example, if a

face image is misclassified into a airplane, the matched re-

gions are unlikely to be on the correct object, which leads

to localization errors. On the other hand, faces in Caltech-

101 and giraffes in ETHZ dataset generate higher FPR val-

ues. This is primarily because there is relatively little back-

ground variation across some of the training images. For

example, since trees in grassy plain are very often observed

along with giraffes across the training images, it is natural

that trees are also considered as important visual informa-

tion for the giraffes class. In the case of faces, the higher

FPRs are mainly due to the fact that the upper bodies (es-

pecially, shoulders) are always in the image with the faces,

but the bounding boxes are located on the faces only.

Fig.5 shows some examples of the localization. Even

though there are a lot of features in the background, the

high confidence features are mostly on the objects. Some

selected features on the background are low-ranked (col-

ored blue). At the same time, the class representative fea-

tures are fairly selected as hubs such as reddish wheels in

the car class and eyes in the face class.

5.3. Computational issues

The VSN is represented by a n × n matrix, where n is

the total number of features. However, in practice, the VSN

is very sparse. For example, in the case of six object classes

in Caltech-101, the number of nodes in the VSN is about

90,000. The VSN is quite sparse since the ratio of nonzero

elements is about 5 × 10−4. The sparseness of the vertex

similarity matrix Z is about 0.002. However, since most of

the non-zero elements have very low values, we could use

an even sparser matrix by thresholding it.

The basic operation used in the algorithms is the power

iteration on matrices. Owing to the sparseness of the matri-

ces involved, the complexity of the power iteration grows

roughly linearly with n. This is similar to the behavior

observed in other applications of the link analysis tech-

niques [3]. In addition, motivated by the very large size of

the matrices involved in Web applications, there has been a

lot of work in optimizing the power method by taking ad-

vantage, among other things, of latent block structure and

convergence acceleration techniques [3]. Although we did

not use them in this work, these methods would enable scal-

ing to much larger graphs.

6. Conclusions

We proposed an approach for extracting object models

from unlabeled training data. Unlike prior methods, this ap-

proach extracts categories and features within the categories

by analyzing a visual similarity graph, without clustering or

statistical modeling. This representation provides a global

view of the interactions between all features which allows

us to use different types of information - ranked importance

of each feature with respect to an image or an object cat-

egory and structural similarity between any pair of nodes.

This approach yields better results on the Caltech-101 ex-

amples used in prior work in unsupervised modeling, with

a larger number of classes. We also showed competitive

results for the TUD/ETHZ dataset.

We believe much remains to be done for this approach to

be used in other visual tasks. In particular, even though we

have a rich representation which describes all interactions

between low-level visual information, we can certainly

improve the way we integrate it in Eq.5 and Eq.6, which are

first-order sums of two types of information estimated from

link analysis. More detailed investigation of feature level

interactions is needed, including handling a set of images

containing multiple categories and instances. Finally, the

sparseness of the data observed in these experiments, to-

gether with the fact that the link analysis tools are routinely

used in far larger applications suggest that it is possible to

scale the algorithms up to a much large of classes.



Figure 5. Some examples of localization for the Caltech-101 and TUD/ETHZ dataset. In each image pair, the left image represents original

extracted features with yellow, and the right image shows top 20% high-ranked features with color variance according to the importance

weights. The jet colormap is used from red(high) to blue(low). (These figures are best viewed in color.)

Acknowledgement. This research was performed in

part for the Intelligent Robotics Development Program, one

of the 21st Century Frontier R&D Program funded by the

Ministry of Commerce, Industry and Energy of Korea.

References

[1] A.-L. Barabási. Scale-free networks. Scientific American,

288:60–69, 2003.

[2] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and ob-

ject recognition using low distortion correspondence, 2005.

CVPR.

[3] P. Berkhin. A survey on pagerank computing. Internet Math-

ematics, 2(1):73–120, 2005.

[4] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and

P. V. Dooren. A measure of similarity between graph ver-

tices: Applications to synonym extraction and web search-

ing. SIAM Review, 46(4):647–666, 2004.

[5] S. Brin and L. Page. The anatomy of a large-scale hypertex-

tual web search engine, 1998. WWW.

[6] L. Cao and L. Fei-Fei. Spatial coherent latent topic model

for concurrent object segmentation and classification, 2007.

ICCV.

[7] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of

object categories. PAMI, 28(4):594–611, 2006.

[8] L. Fei-Fei, R. Fergus, and A. Torralba. Recognizing and

learning object categories, 2007. Short Courses for CVPR.

[9] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning

object categories from google’s image search, 2005. ICCV.

[10] M. Fritz and B. Schiele. Towards unsupervised discovery of

visual categories, 2006. DAGM-Symposium.

[11] K. Grauman and T. Darrell. Unsupervised learning of cate-

gories from sets of partially matching image features, 2006.

CVPR.

[12] J. Kleinberg. Authoritative sources in a hyperlinked environ-

ment. Journal of the ACM, 46(5):604–632, 1999.

[13] M. Leordeanu and M. Hebert. A spectral technique for corre-

spondence problems using pairwise constraints, 2005. ICCV.

[14] M. Leordeanu and M. Hebert. Efficient map approximation

for dense energy functions, 2006. ICML.

[15] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local

appearance: Category recognition from pairwise interactions

of simple features, 2007. CVPR.

[16] D. Lowe. Distinctive image features from scale invariant

keypoints. IJCV, 60(2):91–110, 2004.

[17] K. Mikolajczyk and C. Schmid. Scale and affine invariant

interest point detectors. IJCV, 60(1):63–86, 2004.

[18] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Auto-

matic multimedia cross-modal correlation discovery, 2004.

KDD.

[19] T. Quack, V. Ferrari, B. Leibe, and L. V. Gool. Efficient min-

ing of frequent and distinctive feature configurations, 2007.

[20] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. PAMI, 22(8):888–905, 2000.

[21] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T.

Freeman. Discovering objects and their location in images

image features, 2005. ICCV.

[22] S. Todorovic and N. Ahuja. Extracting subimages of an un-

known category from a set of images, 2006. CVPR.

[23] U. von Luxburg. A tutorial on spectral clustering. Statistics

and Computing, 17(4):395–416, 2007.


