PAGE
3

Introduction to C – Section 1 (Dr. Lobo) Assignment Part 2d
Consult the Course’s Main Page for Parts 2a, 2b, and 2c
Due date: Please consult Dr. Lobo’s Section’s syllabus.
Notes
1. Please read the notes on Dev C++ and WebCT provided with Lab #0 if you didn’t get a chance to do that lab.

Objectives
1. To reinforce your knowledge of the if-then-else construct.
2. To learn how to write simple loops to solve problems and build on previous solutions.
Consult the Course’s Main Page for Parts 2a, 2b, and 2c.
Problem D: A Multiplication Game of Random Duration
All the political candidates espouse improving our education system. The candidate for whom you work has given you the task of creating a program that can be used to help students' arithmetic skills to show that he/she is serious about education.

You are to write a program that drills kids with multiplication problems. Give the user random multiplication problems as pairs of numbers, where each number being multiplied is in between 0 and 12, inclusive. Allow your random computation (that generates numbers between 0 and 12) to also generate the number 13. If the first number generated (for the pair) is 13, the game stops. At the end of the game, output how many problems the user has solved correctly and how much time it took them. Then, give students a final score according to the following formula:

Score = (Time Spent (in seconds) + 5 × (Number of incorrect probs.))/Number of probs.
Clearly, the lower the score, the better! In this manner, kids can see if they are making progress or not.

How to calculate time spent for a segment of code in a C program:

In order to calculate how much time something takes, you can use the time function. In particular, the function call time(0) returns an int that represents the number of seconds after the birth of the Unix operating system. In order to effectively use this, you must call the function twice: once right before you start what you want to time, and once right afterwards. Subtract these two values to obtain the amount of time a segment of code took. Here is a short example:

int start = time(0);

// Insert code you want to time here.

int end = time(0);

int timespent = end - start;

printf("Your code took %d seconds.\n", timespent);

Input Specification

The number of problems to answer entered by the user will always be a positive integer less than 50.

Output Specification

For each correct response, output: Correct!
For each incorrect response, output: Incorrect, A x B = C.
where A and B are the numbers in the problem they missed, and C is the correct answer.
After the number 13 is encountered, the program is ready to stop, so output a terminating message and then a single line with the following format:

The program will now end.

You got X problems correct and Y problems incorrect in Z seconds.

where X is the number of problems solved correctly, Y is the number of problems with incorrect answers, and Z is the amount of time in seconds the user took.

Then output one final line with the user's score:

Your normalized score is S.

where S is the normalized final score for the user using the formula previously given.
Output Samples

Here is one sample output of running the program. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. The user input is given in italics while the program output is in bold.

Sample Run #1
Hmmm .. Let us see: 3 x 9 = 27
Correct!

Hmmm .. Let us see: 4 x 6 = 42

Incorrect, 4 x 6 = 24.

Hmmm .. Let us see: 12 x 11 = 132

Correct!

Hmmm .. Let us see: 8 x 2 = 16

Correct!

Hmmm .. Let us see: 7 x 5 = 35

Correct!

Hmmm .. Let us see: The program will now end.

You got 4 problems correct and 1 problems incorrect in 17 seconds.

Your normalized score is 4.40.

References

Textbook: Chapters 5 and 6 (5.1,5.2,6.16.3)

Notes: Lectures 5, 6, 7

Deliverables

In addition to the prior three source files:

1) tax.c, for your solution to Problem A

2) bigstate.c, for your solution to Problem B

3) multgame.c, for your solution to Problem C

You are to submit:

4) multgamehowlong.c, for your solution to Problem D.

All files are to be submitted over WebCourses. (Do NOT submit .cpp files!!!)
Restrictions

Although you may use other compilers, your program must compile and run using Dev C++. Please use Dev C++ to develop your programs. Each of your three programs should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor, you could get 10% or 15% deducted from your grade.

3) Compatibility with Dev C++ (in Windows). If your program does not compile in this environment, you will get a sizable deduction from your grade.
