Elements of Style for COP 3223
1. Always include a header comment with your name, the date, the brief description of the program and any known bugs. Depending on the circumstance, other information, such as the name of the class or section number is appropriate to include.

2. Give variables names that roughly correspond to their function, without making them too long. The variable thisIsHowMuchCashYouHaveBeforeBuyingTheCouch is just as bad as the variable named a. Try to use consistent conventions when naming variables. It is customary if the variable name is one word, to simply make the variable all lower case, such as age. For variable names of two or more words, the two following conventions are common:

a) camelCase: First word is all lower case, and all subsequent words have their first letter

capitalized. (Example: ageMother.)

b) Underscore Separated. Separate each word with an underscore and have each word be

lowercase. (Example: age_mother.)

It is only appropriate to use single letter variable names in the following cases:

a) Using i, j, or k for loop variables

b) Using x, y, or z for problems where those are coordinates of some sort.

c) Another situation where a single letter is very well-known to stand for a particular

quantity.

3. Use ample white space. There should be a blank line between each logical segment of code. These segments of code shouldn’t exceed 10 -15 lines.

4. Indent in between each set of curly braces. The amount you indent should always be the same number of spaces. It is common to use 4 spaces.

5. Indent statements that are inside of a construct, such as an if or a for.

6. Line up braces in one of the two following ways and be consistent with which one you use throughout an entire program:

for (int i=0; i<n; i++) {

 // Code here.

}

for (int i=0; i<n; i++)

{

 // Code here.

}

7. Comment your code. In particular put one comment for each logical segment of code that explains what that segment does in plain English. A segment of code should vary from 3-15 lines depending on the complexity of the tasks involved. Comment AS you code, NOT at the end!!!
Example: The Difference Style Can Make
For a single illustration of the difference style can make, take a look at the two programs below:

Program #1

#include <stdio.h>

int main() {

printf(“Enter a number.\n”); int a,b; scanf(“%d”, &a);

for (b=1;b<=a;b++)

if (b*(a/b) == a) printf(“%dx%d=%d\n”,b,a/b,a);

return 0;}

Program #2

// Arup Guha

// 11/16/09

// A short program that asks the user for a positive integer and

// writes that integer in all possible ways as a product of two

// integers, with order mattering.

#include <stdio.h>

int main() {

 int number, factor;

 // Get the number from the user.

 printf(“Enter a number.\n”);

 scanf(“%d”, &number);

 // Loop through all possible first factors.

 for (factor=1; factor<=number; factor++) {

 // Use integer division to check if this product works.

 if (factor*(number/factor) == number)

 printf(“%dx%d=%d\n”, factor, number/factor, number);

 } // end for

 return 0;

}

These two programs are identical in content, but the second is much easier to read and edit.

Note: As a programmer gets more experienced and the readers of her code are more experienced, fewer items need to be commented, since these will tend to be “more obvious” to one who is experienced.
