PAGE
5

Introduction to C - Programming Assignment #2
Due date: Please consult Section 2’s syllabus
Notes
1. Please read the notes on Dev C++ and WebCourses provided with Lab #0 if you didn’t get a chance to do that lab.

Objectives
1. To further practice using an if statement for conditional execution.
2. To practice using basic repetition to simplify calculations and to allow for statements to repeat certain sets of statements multiple times.
3. To learn how to use arrays.

4. To write a menu program.
NOTE: in the program, you will write three program, then combine to one.

Begin by doing each one separately, then combine them using the menu shown in

the bankinclass.c example in Lecture notes Number 7.

Part A (10 pts); Part B (20 pts); Part C (60 pts); Part D: Embed 3 parts in Menu (10 pts).
Problem A: Gift Shop Upgrade (shop2.c)
To make even MORE money, the gift shops at UCF need to support shipping large orders of items. The larger quantity of the item, the less the shipping charge is per item. Given the appropriate information about the order, determine the total cost for the user (buying and having the items shipped).
In particular, the user will specify the cost of an individual item, the weight of a single item in pounds, the quantity of the item to be purchased and whether or not the item is taxed. The cost of shipping a set of items is simply dependent on the total weight of the order, according to the following chart:

	Weight (in pounds)
	Cost Per Pound

	[0, 10)
	$4

	[10, 30)
	$2.50

	[30, 50)
	$1.50

	[50, ∞)
	$0.99

Thus, if an order weighed 32.5 pounds, it would cost 32.5 x $1.50 = $48.75 for shipping charges. That cost would be added to the price of the item FIRST, and then this entire total would be taxed, if necessary, using the same tax rate from program #1:
#define TAX_RATE 0.065
Though it might be cheaper to ship a heavier container (notice that shipping 29 pounds costs $72.50 using the formula given), you must pay the shipping cost based on the EXACT weight of the order. (Thus, you can’t just charge 30*$1.50 = $45.00 to ship a 29 pound order, you must charge $72.50.)
Note: the square bracket in the chart above means that value is included in the range, while a (curved) parenthesis means that value isn’t included in the range. Thus, it costs 10x$2.50 = $25 to ship 10 pounds, but 9.9x$4 = $39.60 to ship 9.9 pounds.

Input Specification

1. The item price will be a positive real number less than 100.
2. The weight of an item (in pounds) will be a positive real number less than 100.
3. The quantity of the item purchased will be a positive integer less than 100.
4. The answer to the tax question will either be 0 (no tax), or 1 (tax).
Output Specification

Output the total cost of the purchase (in dollars) to two decimal places using the format below:
Your total purchase, with shipping, will cost $X.XX.
Note: the number of digits before the decimal will vary, based on the cost of the purchase, but you should always print exactly 2 digits after the decimal.

Output Sample

Below is one sample output of running the program. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above. In the sample run below, for clarity and ease of reading, the user input is given in italics while the program output is in bold. (Note: When you actually run your program no bold or italics should appear at all. These are simply used in this description for clarity’s sake.)

Sample Run #1

What is the cost of the item to be purchased (in dollars)?
9.75
What is the weight of an item (in pounds)?

0.5
How many of the item are you purchasing?
10
Is the item a taxed item (1 = yes, 0 = no)?
1
Your total purchase, with shipping, will cost $125.14.

(Note: Had the user entered 0 for the last question in this example instead, the cost would have been $117.50, since the shipping cost is 5 x $4.00 = $20, since the order weighs 5 pounds.)
Problem B: Calorie Counter Redesign (calories2.c)
In program #1, if a customer gained weight, the program simply produced a nonsensical message similar to
You lost -0.035 pounds today!

In this program, instead of outputting a message of this format when the user gains weight (or stays exactly the same), output messages with the following formats for those two cases:
You gained X.XXX pounds today!

Your weight stayed EXACTLY the same today!

The last message should only print out if the net calories gained is exactly 0. The rest of this program should be identical to the version in the first assignment. Note: Please use all of the same constants, etc. for this program as the version of this program in assignment #1.
Input Specification

1. All four values will be non-negative integers less than 720, representing the number of minutes spent for each of the four activities.
Output Specification

Output a single line with one of the three formats, based on whether or not the user lost weight, gained weight, or stayed exactly the same:
You lost X.XXX pounds today!
You gained X.XXX pounds today.

Your weight stayed EXACTLY the same today!

Output Samples

A sample of the program running is included below. Note that this sample is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above.
Sample Run
How many minutes were you walking?
100
How many minutes were you standing?
200
How many minutes were you drinking?
20

How many minutes were you eating?

15
You gained 0.029 pounds today.
Problem C: Roller Coaster Redesign (coaster2.c)
Your boss has noticed that maximizing the length of the train does not always maximize the number of passengers. She’s come up with a great idea for you to improve your program, so that you can calculate the actual maximum number of passengers the roller coaster can support. Her idea is as follows:
Let’s say the maximum length of a train is 55. Then, we can simply start by trying out a train of length 10 (one car), and seeing how many passengers such a train would support. Then, we can try a train of length 18 (two cars) and recalculate the number of passengers this design would support. If this is better than the best design we’ve seen so far, simply save this new value. Continue in this fashion, until we’ve tried all possible trains. In this situation, we would try trains of lengths 10, 18, 26, 34, 42, and 50. (We stop here because the next train, of length 58, would be too long.) In each of these candidate lengths, compute the following quantity: total rollercoaster passengers divided by the total length of all the trains. Store each value in an array, so you will be storing as many values as there are lengths. Finally, compute the average of those values, and print it out as a final answer.

The user will input the same information as was inputted in assignment #1 part C.
Note that this time you will not be inputting the number N, and you will not print the message about the surplus. This time, however, your program should output the actual number of maximum people the ride can support, the number of cars per train that achieves this maximum, and the final average of the passengers/length ratio.
Input Specification

1. The total length of the track will be a positive integer (in feet) less than 10000.
2. The maximum length of a train will be a positive integer in between 10 and 100, inclusive.
Output Specification

The output should consist of two lines. The first line outputs the maximum number of passengers on the roller coaster at any one time with a single statement of the following format:
Your ride can have at most X people on it at one time.
The second line should output the number of cars in the train that achieves this maximum with a single statement of the following format:

This can be achieved with trains of Y cars.

Note: If there are multiple ways in which the maximum number of people can be supported, output the smallest number of cars that achieves this maximum. (Thus, if both 2 cars and 4 cars lead to 100 people on the ride and this is the maximum, then your program should output 2 cars.)

Output Samples

Two sample outputs of running the program are included below. Note that these samples are NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given above.
Sample Run #1
What is the total length of the track, in feet?
1000
What is the maximum length of a train, in feet?
42
Your ride can have at most 112 people on it at one time.
This can be achieved with trains of 4 cars.
AVG Ratio: xxx.xx

(Note: The maximum is achieved when each train has 4 cars on it, and each car has 4 people, at most. Thus, 16 people can sit in one train. This train has a length of 34 feet, and since 34 feet x 7 = 238 feet, which is less than 25% of the total track length, this means that exactly 7 trains can be placed on the track at the same time. Thus, 16 people/train x 7 trains = 112 people total.)

Sample Run #2

What is the total length of the track, in feet?

4025
What is the maximum length of a train, in feet?

89
Your ride can have at most 480 people on it at one time.
This can be achieved with trains of 6 cars.
AVG Ratio: xxx.xx
Part D: Embed all the above Parts in a menu

Deliverables

Three source files:

1) shop2.c, for your solution to problem A

2) calories2.c for your solution to problem B

3) coaster2.c for your solution to problem C
 4) menu.c for your solution to part D.

All files are to be submitted over WebCourses.
Restrictions

Although you may use other compilers, your program must compile and run using Dev C++. Your programs should include a header comment with the following information: your name, course number, section number, assignment title, and date. Include comments throughout your code describing the major steps in solving the problem.

Grading Details

Your programs will be graded upon the following criteria:

1) Your correctness.
2) Your programming style. Even if your program works perfectly, if your programming style is poor, you could get 15% deducted from your grade.
3) Compatibility to Dev C++ (in Windows). If your program does not compile in this environment, you will get a sizable deduction from your grade.
