Exam #1 Review for COP 3223 Spring 2014
Main Exam Date + Time(s): Saturday 3/15/2014, 8:00 am – 9:15 am
Exam Location: ENG2-102
	Reading from Text
	Topic

	Chapters 5-6
	Program basics, variables, expressions, input/output, Variables, keywords, constants, expressions, precedence, assignment operator

	Chapter 7 (excluding section 3.14)
	boolean expressions, short-circuit evaluation, compound and empty statements, if statement

	Chapter 8
	loops

	Chapter 9
	files

Exam Format and Information
1) Several tracing, short answer and coding questions (100 pts total)

2) Exam Aids: Two sheets of notes on 8.5” x 11” paper, front and back.
Alternate Exam Time: Given In WebCourses Announcements. Please email dmarino@cs.ucf.edu ASAP if you want to take the exam at an alternate time.
Program basics

C programs typically contain the following components:

1) Header comment

2) Set of #include directives

3) Declaration of the function int main()

4) Variable declarations at the beginning of each function

5) Code/Body of the program

The purpose of each:

1) To identify to others reading the code the author, date and general purpose of the code.

2) Often times, prewritten C functions are called in programs. In order to use these functions, the appropriate files must be included. For input and output, we must include the file <stdio.h>

3) All programs must have a main function. This is the only function in a file that actually directly gets executed.

4) Nearly all programs use variables. These must always be declared at the beginning of a function.

5) This portion of the program is the bulk of the program and contains all the actual logic behind the program.

Assignment Statement and Arithmetic Expressions

The assignment statement allows the value of a variable to change. The general syntax is as follows:

<variable> = <arithmetic expression>;

The way this statement is evaluated is as follows:

1) The value of the arithmetic expression is determined.

2) The value of the variable is changed to the value computed in step 1.

Arithmetic Expression use the following operators: +, -, *, /, %

The most important issues to pay attention to are the following:

1) The difference between integer and floating point division
2) How mod(%) works
3) Order of operations when parentheses don't clearly indicate this order.
Output

printf is the C function used to write output to the screen. The basic form of printf takes in one parameter, a String literal. Since printf is a function, it is always followed by parentheses. Its actual parameter(s) are then listed inside the parentheses, separated by commas. Here is a simple example:

printf("This is a test review.\n");

The result of this type of printf is that everything inside the double quotes gets printed exactly, except for escape sequences, which are two character codes starting with a backslash, and variable codes. (Please memorize the following escape sequences for the exam: ‘\n’, ‘\t’, ‘\\’ and ‘\”’.)

The printf function can have more than one parameter. This occurs when you want to print out the value of a variable or expression, or multiple variables or expressions. The first parameter to the function is still a string literal, with one or more variable codes embedded. The following parameters (separated by commas), are expressions that evaluate to the corresponding types of the variable codes. Here is an example:

printf("radius=%.2.lf, area=%.2lf.\n", r, PI*r*r);

Please memorize the percent codes for the following types: int, float, double, and char.

Note: You mix text with percent codes in the double quotes. Each value that gets printed can be any expression, not just a variable. No ampersands should be present (usually) unless we want to print out the memory address of a variable, which I WON’T ask for on the exam.
Input

Input from the user is read in through the scanf function. The first parameter to the scanf function is a string literal that contains variable code(s). The following parameters are memory addresses, corresponding to where particular variables are stored in memory. To access the memory address of where a variable is stored, the & operator should be used. Here is an example to read in an integer into an integer variable value:

scanf("%d", &value);

Multiple values may be read in by one scanf statement. In this situation, each percent code in order corresponds to the memory addresses in the order that they are listed. Note that values can NOT be read into arithmetic expressions; they must be read into memory address of variables. Furthermore, if the & is omitted, they you are not specifying a valid memory address and thus, your code will typically cause a run-time error and crash.

Here is an example with multiple variables read in with one scanf:

scanf(“%d%d%lf”, &numKids, &numAdults, &price);

Note that nothing is inside the double quotes of the scanf except for the percent codes. Also, you don’t put any formatting information in these percent codes, so no %.2lf. Don’t put ‘/n’ or any text inside the double quotes of scanf. ONLY put the percent codes. This is different than printf. Also, remember to use the ampersand in front of the variables you read into. I will take off credit for omitting these, I promise.

Boolean Expressions

A boolean expression is one that evaluates to true or false. Technically, in C, there is no boolean type. Instead a boolean type is stored as an integer. The integer 1 represents true and the integer 0 represents false.

Most boolean expressions are created using the following elements:

1) Arithmetic Expressions

2) Relational Operators

3) Boolean Operators

The relational operators compare arithmetic expressions. These operators are: ==, !=, >=, <=, >, <.
Note the difference between a single equal sign and a double equal sign. This difference is very important and if you interchange the two, will create an unwanted difference in how your code runs.

The boolean operators are: &&, || and !.

Both and(&&) and or(||) are binary operators, meaning that they take two operands. The function they compute is identical to the meanings of the English words and and or.

Not(!) is an unary operator that takes on operand and negates its value.

If statement

This construct allows for the conditional execution of code depending on whether or not a boolean expression is true.

The most general syntax for an if statement is as follows:

if (<boolean expression1>)

 <stmts1>

else if (<boolean expression2>)

 <stmts2>

else if (<boolean expression3>)

 <stmts3>

else

 <stmtsn>

stmtA

Each boolean expression is evaluated until the first true one is found. Then the corresponding statement is executed and the flow of control continues at the end of the if statement. If none of the boolean expressions are true, <stmtsn> is executed and then execution continues after the end of the if statement.

Key issues to remember about the if statement:

1) Matching-else problem

2) Use of the compound statement

3) The difference between separate if statements and a single if-else if type construct.

4) The effect of an inadvertent semicolon, which is actually an empty statement.

5) The difference between one equal sign and two. Inside of a boolean expression, if you use = instead of == the results will be different than expected!
While Loop

The basic construct for the while loop is as follows:

while (<boolean expression1>)

 <stmts1>;

<stmtA>

Here is how this executes:

1) Evaluate the boolean condition.

2) If it's true, execute <stmts1>

3) If it's false, skip to after the end of the while loop and

 execute stmtA.

4) After you execute <stmts1>, you have completed a loop iteration. Now, go back to step #1 in these directions and repeat.

Both the for and do-while loop have similar constructs. The most important issues about loops to remember are:

1) Watch out for infinite loops

2) Often times, a loop uses a int variable that acts as a counter indicating the number of times the loop has run.

3) Don't forget the {} when you intend to have a block of statements inside of a loop.

For Loop

Here's the general construct for a for loop (with a block of statements):

for (<init stmt>; <boolean expression>; <increment stmt>) {

 stmt1;

 stmt2;

 ...

 stmtn;

}

stmtA;

Here is how the computer executes the for statement:

1) Execute the initial statement.

2) Evaluate the boolean expression.

3) If it's true, execute statements 1 through n.

4) Do the increment statement.

5) Then go back to step #2

6) If it's false, skip over the loop body and continue

execution with stmt A.

The key idea here is that a for loop can be used to run a block of code for a fixed number of iterations very easily. Furthermore, it can be advantageous to use the for loop index variable within the loop for various calculations, or even as a bound to control another loop!
Do-While Loop

This is the third and last loop you will see. Here is the general syntax:

do

 stmt;

while (<bool exp>);

Typically, the statement will be a block, so usually, we have:

do {

 stmt1;

 stmt2;

 ...

 stmtn;

} while (<bool exp>);

stmtA;

Here is how this construct is evaluated when run:

1) Execute statements 1 through n.

2) Check the boolean expression.

3) If it is true, go back to step 1, otherwise continue execution with statement A.

The key difference between this construct and the while construct is that the body of the loop must be executed at least once here. If you have this type of situation and it is easier for you to check the boolean condition AFTER you have executed a block of statements than before, then this loop may be a suitable choice.
Files

How to open a file (reading)

FILE* ifp = fopen("input.txt", "r");

How to open a file (writing)

FILE* ofp = fopen("output.txt", "w");

Reading from a file

fscanf(ifp, “%d", &number);

Writing to a file

fprintf(ifp, “Stores: %d\n", &numStores);

How to close a file

fclose(ifp);

What to Watch Out For

The multiple choice will predominantly contain tracing questions and other questions dealing with the rules of C. (A tracing question is when you are given a program and must determine what it will output to the screen.)

I WILL ask questions where there are logical bugs in the code and you have to determine what the computer will output. For example, I may have a tracing question where I use = instead of == and you will need to know how the program will run. I may accidentally place an extra semicolon somewhere, etc. The reason I ask these questions is to test whether or not you know the rules of the language.

Also, knowing these rules makes one better at debugging, since understanding the nuances of how the compiler interprets statements helps one figure out what mistake was made. I get many complaints on my evaluations that these questions aren't fair. But experience has shown me that students typically have trouble debugging these very issues precisely because they do not understand how the computer interprets their statements with logical errors. Thus, I feel these are very important issues to test.

Issues to Look Out For

1) == vs = inside of an if or a loop

2) Missing {} from an if or a loop

3) Accidental extra ; in the middle of an if or a loop

4) Incorrectly stringing together inequalities in a bool. exp.

5) Matching else problem

6) Separate ifs versus Nested ifs
So that you aren't shocked, my usual class averages are in between 60 and 65. As stated in my grading philosophy, I adjust my grading scheme to reflect this. (I don't curve though, since that won't help the class in most situations.)

