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The Selection Problem

 Given an integer k and n elements x1, x2, …, xn, 
taken from a total order, find the k-th smallest 
element in this set.

 Naïve solution - SORT!
 we can sort the set in O(n log n) time and then 

index the k-th element.

 Can we solve the selection problem faster?

7  4  9  6 2  → 2  4  6 7  9 k=3
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The Selection Problem

 Can we solve the selection problem faster?
 Of course we can!
 We use Quick Select

 What is Quick Select?
 Concept is very similar to Quick Sort
 But in this case, we are not sorting
 We don’t care about sorting the numbers
 BUT, we do care about finding the specific element
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Quick-Select

 Quick-select is a randomized
selection algorithm based on 
the prune-and-search 
paradigm:
 Prune: pick a random element x

(called pivot) and partition S into 
 L elements less than x
 E elements equal x
 G elements greater than x

 Search: depending on k, either 
answer is in E, or we need to 
recur on either L or G

x

L G

x

E

k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|



Quick Sort & Quick Select page 5

Partition
 We partition an input 

sequence as in the quick-sort 
algorithm:
 We remove, in turn, each 

element y from S and 
 We insert y into L, E or G,

depending on the result of 
the comparison with the pivot 
x

 Each insertion and removal is 
at the beginning or at the end 
of a sequence, and hence 
takes O(1) time

 Thus, the partition step of 
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G
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Quick-Select Visualization
 An execution of quick-select can be visualized by a 

recursion path
 Each node represents a recursive call of quick-select, and 

stores k and the remaining sequence

k=5, S=(7  4  9  3 2  6  5  1  8)

5

k=2, S=(7  4  9  6  5  8)

k=2, S=(7  4 6  5)

k=1, S=(7  6  5)
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Running Time
 Best Case - even splits (n/2 and n/2)
 Worst Case - bad splits (1 and n-1)

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call
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Expected Running Time
 Consider a recursive call of quick-select on a sequence of size s

 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots
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quickSelect Summary

 Recall: the Selection problem
 Find the kth smallest element in an array a

 quickSelect(a, k):
1. If a.length = 1, then k=1 and return the element.
2. Pick a pivot v ∈ a.
3. Partition a – {v} into a1 (left side) and a2 (right side).

• if k ≤ a1.length, then the kth smallest element must 
be in a1.  So return quickSelect(a1, k).

• else if k = 1 + a1.length, return the pivot v.
• Otherwise, the kth smallest element is in a2.  

Return quickSelect(a2, k - a1.length - 1).
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