
Computer Science Department
University of Central Florida

Quick Sort & Quick Select

COP 3502 Recitation Session

Quick Sort & Quick Select page 2

The Selection Problem

 Given an integer k and n elements x1, x2, …, xn,
taken from a total order, find the k-th smallest
element in this set.

 Naïve solution - SORT!
 we can sort the set in O(n log n) time and then

index the k-th element.

 Can we solve the selection problem faster?

7 4 9 6 2 → 2 4 6 7 9 k=3

Quick Sort & Quick Select page 3

The Selection Problem

 Can we solve the selection problem faster?
 Of course we can!
 We use Quick Select

 What is Quick Select?
 Concept is very similar to Quick Sort
 But in this case, we are not sorting
 We don’t care about sorting the numbers
 BUT, we do care about finding the specific element

Quick Sort & Quick Select page 4

Quick-Select

 Quick-select is a randomized
selection algorithm based on
the prune-and-search
paradigm:
 Prune: pick a random element x

(called pivot) and partition S into
 L elements less than x
 E elements equal x
 G elements greater than x

 Search: depending on k, either
answer is in E, or we need to
recur on either L or G

x

L G

x

E

k < |L|

|L| < k < |L|+|E|
(done)

k > |L|+|E|
k’ = k - |L| - |E|

Quick Sort & Quick Select page 5

Partition
 We partition an input

sequence as in the quick-sort
algorithm:
 We remove, in turn, each

element y from S and
 We insert y into L, E or G,

depending on the result of
the comparison with the pivot
x

 Each insertion and removal is
at the beginning or at the end
of a sequence, and hence
takes O(1) time

 Thus, the partition step of
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

Quick Sort & Quick Select page 6

Quick-Select Visualization
 An execution of quick-select can be visualized by a

recursion path
 Each node represents a recursive call of quick-select, and

stores k and the remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

Quick Sort & Quick Select page 7

Running Time
 Best Case - even splits (n/2 and n/2)
 Worst Case - bad splits (1 and n-1)

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

Quick Sort & Quick Select page 8

Expected Running Time
 Consider a recursive call of quick-select on a sequence of size s

 Good call: the sizes of L and G are each less than 3s/4
 Bad call: one of L and G has size greater than 3s/4

 A call is good with probability 1/2
 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

Quick Sort & Quick Select page 9

quickSelect Summary

 Recall: the Selection problem
 Find the kth smallest element in an array a

 quickSelect(a, k):
1. If a.length = 1, then k=1 and return the element.
2. Pick a pivot v ∈ a.
3. Partition a – {v} into a1 (left side) and a2 (right side).

• if k ≤ a1.length, then the kth smallest element must
be in a1. So return quickSelect(a1, k).

• else if k = 1 + a1.length, return the pivot v.
• Otherwise, the kth smallest element is in a2.

Return quickSelect(a2, k - a1.length - 1).

Computer Science Department
University of Central Florida

Quick Sort & Quick Select

COP 3502 Recitation Session

	Quick Sort & Quick Select
	The Selection Problem
	The Selection Problem
	Quick-Select
	Partition
	Quick-Select Visualization
	 Running Time
	Expected Running Time
	quickSelect Summary
	Quick Sort & Quick Select

