Quick Sort & Quick Select

,

r | Computer Science Department
. University of Central Florida

COP 3502 Recitation Session




The Selection Problem

Given an integer k and n elements X, X,, ..., X,
taken from a total order, find the k-th smallest
element In this set.

Naive solution - SORT!

we can sort the set in O(n log n) time and then
Index the k-th element.

[749@2—>24§79 ] k=3

Can we solve the selection problem faster?

Quick Sort & Quick Select page 2




The Selection Problem

Can we solve the selection problem faster?
Of course we can!
We use Quick Select

What is Quick Select?

Concept is very similar to Quick Sort
But in this case, we are not sorting
We don’t care about sorting the numbers
—_— BUT, we do care about finding the specific element

Quick Sort & Quick Select page 3




Quick-Select

Quick-select is a randomized
selection algorithm based on
the prune-and-search
paradigm:

Prune: pick a random element x
(called pivot) and partition S into

L elements less than x
E elements equal x \ Y 7N Y a Y 7
G elements greater than x L E G

Search: depending on k, either k<|L| ‘ k> |L|+|E]|

answer is in E, or we need to K'=k-|L|-|E]|
recur on either L or G

IL| <k <[L[+[E]

(done)

Quick Sort & Quick Select page 4




Partition

&
i

L

We partition an input
sequence as in the quick-sort
algorithm:

We remove, in turn, each
elementy from S and

We inserty into L, E or G,
depending on the result of
the comparison with the pivot
X

Each insertion and removal is
at the beginning or at the end
of a sequence, and hence
takes O(1) time

Thus, the partition step of
quick-select takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G « empty sequences
X <~ S.remove(p)
while =S.isEmpty()
y «— S.remove(S.first())
ify <x
L.insertLast(y)
elseify =x
E.insertLast(y)
else{y>x}
G.insertLast(y)
returnL, E, G

Quick Sort & Quick Select page 5




Quick-Select Visualization

An execution of quick-select can be visualized by a
recursion path

Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

(k=5,5=(7 4 9326 5 1 8) ]

(k=2,5=(7 4 9 6 5 8) ]

(k=2,5=(7 4 6 5) ]

(k=1,8=(7 6 5) |

5]
Quick Sort & Quick Select page 6




Running Time @0

Best Case - even splits (n/2 and n/2)
Worst Case - bad splits (1 and n-1)

72943761 ] (72943761 ]
(2431 ) (797 ) 1) (7294376 |
Good call Bad call

Quick Sort & Quick Select page 7




G

S
Expected Running Time QQ

Consider a recursive call of quick-select on a sequence of size s
Good call: the sizes of L and G are each less than 3s/4
Bad call: one of L and G has size greater than 3s/4

72943761 ] (72943761 ]
(2431 ) (797 ) 1) (7294376 |
Good call Bad call

A call is good with probability 1/2
1/2 of the possible pivots cause good calls:

H_I\ ~ JH_J

Bad pivots  Good pivots Bad pivots

Quick Sort & Quick Select page 8




quickSelect Summary

Recall: the Selection problem
Find the kth smallest element in an array a

quickSelect(a, k):

If a.length = 1, then k=1 and return the element.
Pick a pivot v € a.

Partition a — {v} into a, (left side) and a, (right side).

If k < a,.length, then the kth smallest element must
be in a,. So return quickSelect(a,, k).

else if k =1 + a,.length, return the pivot v.

Otherwise, the kth smallest element is in a,.
Return quickSelect(a,, k - a,.length - 1).

Quick Sort & Quick Select page 9




Quick Sort & Quick Select

,

r | Computer Science Department
. University of Central Florida

COP 3502 Recitation Session




	Quick Sort & Quick Select
	The Selection Problem
	The Selection Problem
	Quick-Select
	Partition
	Quick-Select Visualization
	 Running Time
	Expected Running Time
	quickSelect Summary
	Quick Sort & Quick Select

