Line by Line Parsing In C

,

r | Computer Science Department
. University of Central Florida

COP 3502 Recitation Session




Parsing

Typical parsing in C:
We read input from keyboard and files as

Individual tokens separated by white space

scanf and fscanf are used for this
They read successive tokens from the input
They read until white space is encountered and then it stops

The next call of scanf picks up from there and reads the next
token

When is this parsing method useful?
If we know how many tokens will be inputed,

and we know what each token represents
integer, float, string, etc.

Line by Line Parsing in C page 2




Parsing

Typical parsing in C:
But what if we don’t know how many tokens we

will read In?

Say it is a list of Math classes for Spring 2010
MA 245 MA 318 MA412 ...

Maybe the list has 10 classes, or 20 classes, or more

How would we go about reading this in?

Line by Line Parsing in C page 3




Parsing

Typical input files:
In these types of files, spaces are usually part of
the input
Such as the space between a first and last name

Tabs and newlines are usually the delimiters
Stuff that separates the data

- Standard processing is to read one entire line at a
time
Which could have several pieces of information

Then use a “string tokenizer” to parse out the different
pieces of data in the line.

Line by Line Parsing in C page 4




Parsing

How do we make this happen:

Start with fgets function:

Allows us to read in an entire line at once
Meaning, until the next newline

char *fgets(char *restrict s, int n, FILE *restrict stream);

The first parameter represents the string into which you want to
read in the line from the file.

The second parameter represents the maximum number of
characters you want to read in. (If the line is longer, n characters

| are read, if the line is shorter, then the whole line is read.)
The third parameter is a pointer to the file from which you want to
read.

The function ALSO returns a pointer to the beginning memory
address of the character array into which the line was read.

Line by Line Parsing in C page 5




Parsing

How do we make this happen:

What do you do with this newly read line:

If there is only one item per line, fgets stores that item in
the designated character array
You then just continue with the program

But often files have several pieces of information per line
Ex: Joe Smith, Computer Science, Junior, 3.75
So we need to separate out each piece from the newly read line
But how?

Use a string tokenizer function...

Line by Line Parsing in C page 6




Parsing

strtok:

In C, the string tokenizer function is strtok:
This is a built-in function that we can call

The 18t call sets up the string tokenizer
You tell the function which string to tokenize,
and which items work as delimiters (comma, tab, etc)

Example:

- We read line into an array called line and the delimiters
are commas

Here’s how you would call the function:
strtok(line, “,”);

At the end of this call, “line” will just store a string that represents
the first token of the original contents

Line by Line Parsing in C page /7




Parsing

strtok:

To access the remaining tokens:

Call the strtok function again, BUT now with a new first
parameter

Call strtok with NULL as the first parameter and use the same
delimiters as in the original call

Also, this time, the function will returns a pointer to the
beginning of the desired token (the next token)
So we must store this pointer.

EX:
char *p;
p = strtok(NULL, “,");

Line by Line Parsing in C page 8




Parsing

strtok:

To access the remaining tokens:

You continue making these strtok function calls until
there are no more tokens in the line

Either you know the number of tokens in the line and
simply use a for loop

Or, you can check each time to see if the pointer p is
NULL or not.

R If p is NULL, then the function did not return a pointer, meaning
there were no more tokens in the string tokenizer

Line by Line Parsing in C page 9




Parsing

Additional Information:
The function strtok returns a VOID pointer
And...your point is...

The point is that this pointer needs to be cast to a
char pointer

More accurate example:
char *p;
p = (char*)strtok(NULL, “,”);

Line by Line Parsing in C page 10




Parsing

E I C #include <stdio.h>
Xam p e . #include <string.h>
int main(void) {
FILE *fp; // file pointer
char line[80];
char *token;
char *delimiters =" \t\n"; // our delimiters

char *fn = "data.txt"; // file name
fp = fopen(fn,"r");

if ('fp) {
printf("error opening \"%s\" for reading\n",fn);
return -1;

}

fgets(line, 80, fp); // grabs the first line

while ('feof(fp)) { // checks to make sure the line is not the end of file
printf("next line\n");
token = (char*)strtok(line, delimiters); // 1st call
while (token '= NULL) {
printf("\tnext token = %s\n",token);
token = (char*)strtok(NULL, delimiters); // repeated call

}

fgets(line, 80, fp); // grabs additional lines
}
fclose(fp);
return O;

}

Line by Line Parsing in C page 11




Parsing

Example:
So if this was your input: Your output would be:
asdf gwer 12345 next line
Xyzpqr next token = asdf
Of[m next token = qwer
next token = 12345
next line

next token = xyz
next token = p
next token = g
next token =r
next line

next token = ()
next token = ]
next token = 1!

Line by Line Parsing in C page 12




Parsing

Other little tidbits:

The strtok() function modifies the contents of the
original string buffer.

Meaning, you will not have access to the original string
once you start tokenizing it.

So if you need to keep an original copy of the string, you
must make this copy yourself using strcpy().

Line by Line Parsing in C page 13




Parsing

Other little tidbits:

When you use scanf, you do two things:
You read in the data till the next white space,

AND the data is then parsed accordingly
Saved as an int if you used %d, for example

Similarly, when you tokenize, you must parse the
data properly.

atoi() and atof() are two C functions defined in the
standard library for this purpose

atoi -> ascii-to-int

atof -> ascii-to-float

Line by Line Parsing in C page 14




Parsing
Other little tidbits:
Example:
char *s = “123";
Int X = atoi(s);
Example:

char *t = “3.14159";
double y = atof(t);

*Note that in spite of its name atof() returns a
double value.

Line by Line Parsing in C page 15




Line by Line Parsing In C

,

r | Computer Science Department
. University of Central Florida

COP 3502 Recitation Session




	Line by Line Parsing in C
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Line by Line Parsing in C

