
Computer Science Department
University of Central Florida

Line by Line Parsing in C

COP 3502 Recitation Session

Line by Line Parsing in C page 2

Parsing

 Typical parsing in C:
 We read input from keyboard and files as

individual tokens separated by white space
 scanf and fscanf are used for this

 They read successive tokens from the input
 They read until white space is encountered and then it stops
 The next call of scanf picks up from there and reads the next

token

 When is this parsing method useful?
 If we know how many tokens will be inputed,
 and we know what each token represents

 integer, float, string, etc.

Line by Line Parsing in C page 3

Parsing

 Typical parsing in C:
 But what if we don’t know how many tokens we

will read in?
 Say it is a list of Math classes for Spring 2010

 MA 245 MA 318 MA412 …

 Maybe the list has 10 classes, or 20 classes, or more

 How would we go about reading this in?

Line by Line Parsing in C page 4

Parsing

 Typical input files:
 In these types of files, spaces are usually part of

the input
 Such as the space between a first and last name

 Tabs and newlines are usually the delimiters
 Stuff that separates the data

 Standard processing is to read one entire line at a
time
 Which could have several pieces of information
 Then use a “string tokenizer” to parse out the different

pieces of data in the line.

Line by Line Parsing in C page 5

Parsing

 How do we make this happen:
 Start with fgets function:

 Allows us to read in an entire line at once
 Meaning, until the next newline

 char *fgets(char *restrict s, int n, FILE *restrict stream);
 The first parameter represents the string into which you want to

read in the line from the file.
 The second parameter represents the maximum number of

characters you want to read in. (If the line is longer, n characters
are read, if the line is shorter, then the whole line is read.)

 The third parameter is a pointer to the file from which you want to
read.

 The function ALSO returns a pointer to the beginning memory
address of the character array into which the line was read.

Line by Line Parsing in C page 6

Parsing

 How do we make this happen:
 What do you do with this newly read line:

 If there is only one item per line, fgets stores that item in
the designated character array
 You then just continue with the program

 But often files have several pieces of information per line
 Ex: Joe Smith, Computer Science, Junior, 3.75
 So we need to separate out each piece from the newly read line
 But how?

 Use a string tokenizer function…

Line by Line Parsing in C page 7

Parsing

 strtok:
 In C, the string tokenizer function is strtok:

 This is a built-in function that we can call

 The 1st call sets up the string tokenizer
 You tell the function which string to tokenize,
 and which items work as delimiters (comma, tab, etc)

 Example:
 We read line into an array called line and the delimiters

are commas
 Here’s how you would call the function:

 strtok(line, “,”);
 At the end of this call, “line” will just store a string that represents

the first token of the original contents

Line by Line Parsing in C page 8

Parsing

 strtok:
 To access the remaining tokens:

 Call the strtok function again, BUT now with a new first
parameter
 Call strtok with NULL as the first parameter and use the same

delimiters as in the original call

 Also, this time, the function will returns a pointer to the
beginning of the desired token (the next token)
 So we must store this pointer.

 Ex:
char *p;
p = strtok(NULL, “,”);

Line by Line Parsing in C page 9

Parsing

 strtok:
 To access the remaining tokens:

 You continue making these strtok function calls until
there are no more tokens in the line

 Either you know the number of tokens in the line and
simply use a for loop

 Or, you can check each time to see if the pointer p is
NULL or not.
 If p is NULL, then the function did not return a pointer, meaning

there were no more tokens in the string tokenizer

Line by Line Parsing in C page 10

Parsing

 Additional Information:
 The function strtok returns a VOID pointer
 And…your point is…
 The point is that this pointer needs to be cast to a

char pointer
 More accurate example:

char *p;
p = (char*)strtok(NULL, “,”);

Line by Line Parsing in C page 11

Parsing

 Example: #include <stdio.h>
#include <string.h>

int main(void) {
FILE *fp; // file pointer
char line[80];
char *token;
char *delimiters = " ,\t\n"; // our delimiters
char *fn = "data.txt"; // file name
fp = fopen(fn,"r");

if (!fp) {
printf("error opening \"%s\" for reading\n",fn);
return -1;

}

fgets(line, 80, fp); // grabs the first line

while (!feof(fp)) { // checks to make sure the line is not the end of file
printf("next line\n");
token = (char*)strtok(line, delimiters); // 1st call
while (token != NULL) {

printf("\tnext token = %s\n",token);
token = (char*)strtok(NULL, delimiters); // repeated call

}
fgets(line, 80, fp); // grabs additional lines

}
fclose(fp);
return 0;

}

Line by Line Parsing in C page 12

Parsing

 Example:
So if this was your input:

asdf qwer 12345
xyz p q r
() [] !!!

Your output would be:

next line
next token = asdf
next token = qwer
next token = 12345

next line
next token = xyz
next token = p
next token = q
next token = r

next line
next token = ()
next token = []
next token = !!!

Line by Line Parsing in C page 13

Parsing

 Other little tidbits:
 The strtok() function modifies the contents of the

original string buffer.
 Meaning, you will not have access to the original string

once you start tokenizing it.
 So if you need to keep an original copy of the string, you

must make this copy yourself using strcpy().

Line by Line Parsing in C page 14

Parsing

 Other little tidbits:
 When you use scanf, you do two things:

 You read in the data till the next white space,
 AND the data is then parsed accordingly

 Saved as an int if you used %d, for example

 Similarly, when you tokenize, you must parse the
data properly.
 atoi() and atof() are two C functions defined in the

standard library for this purpose
 atoi -> ascii-to-int
 atof -> ascii-to-float

Line by Line Parsing in C page 15

Parsing

 Other little tidbits:
Example:

char *s = “123”;
int x = atoi(s);

Example:
char *t = “3.14159”;
double y = atof(t);

*Note that in spite of its name atof() returns a
double value.

Computer Science Department
University of Central Florida

Line by Line Parsing in C

COP 3502 Recitation Session

	Line by Line Parsing in C
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Parsing
	Line by Line Parsing in C

