
Computer Science Department
University of Central Florida

C-Programming Review
Pointers & Arrays

COP 3502 – Computer Science I

C-Programming Review: Pointers & Arrays page 2

C-Programming Review

POINTERS

C-Programming Review: Pointers & Arrays page 3

Review of pointers

 What is a Pointer?

An Address!

C-Programming Review: Pointers & Arrays page 4

Review of pointers

 A pointer is just a memory location.
 A memory location is simply an integer value,

that we interpret as an address in memory.
 The contents at a particular memory location are

just a collection of bits – there’s nothing special
about them that makes them ints, chars, etc.
 How you want to interpret the bits is up to you.

 Is this... an int value?
... a pointer to a memory address?
... a series of char values?

0xfe4a10c5

C-Programming Review: Pointers & Arrays page 5

Review of pointer variables

 A pointer variable is just a variable, that contains
a value that we interpret as a memory address.

 Just like an uninitialized int variable holds some
arbitrary “garbage” value,
an uninitialized pointer variable points to some
arbitrary “garbage address”

char *m;

(char *)

m

C-Programming Review: Pointers & Arrays page 6

Indirection operator *

 Moves from address to contents

char *m = ″dog″;

char result = *m;

m gives an address of a char
*m instructs us to take the contents of that address
result gets the value ′d′

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

d
(char)

C-Programming Review: Pointers & Arrays page 7

Address operator &

 Instead of contents, returns the address

char *m = ″dog″,

**pm = &m;

pm needs a value of type char **
 Can we give it *m? No – type is char
 Can we give it m? No – type is char *
 &m gives it the right value – the address of a char * value

(char *)

(char **)

m

pm

d
(char)

o
(char)

g
(char)

NUL
(char)

C-Programming Review: Pointers & Arrays page 8

Pointer arithmetic
 C allows pointer values to be incremented by

integer values

char *m = ″dog″;

char result = *(m + 1);

m gives an address of a char
(m + 1) gives the char one byte higher
*(m + 1) instructs us to take the contents of that address
result gets the value ′o′

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

o
(char)

C-Programming Review: Pointers & Arrays page 9

Pointer arithmetic
 A slightly more complex example:

char *m = ″dog″;

char result = *++m;

m gives an address of a char
++m changes m, to the address one byte higher,

and returns the new address
*++m instructs us to take the contents of that location
result gets the value ′o′

(char *)

m

d
(char)

o
(char)

g
(char)

NUL
(char)

(char)

result

o
(char)

C-Programming Review: Pointers & Arrays page 10

Review of pointers

 Again:

 What is a Pointer?

An Address!

C-Programming Review: Pointers & Arrays page 11

Pointer arithmetic
 How about multibyte values?

 Q: Each char value occupies exactly one byte, so obviously
incrementing the pointer by one takes you to a new char value...
But what about types like int that span more than one byte?

 A: C “does the right thing”: increments the pointer by
the size of one int value

int a[2] = {17, 42};
int m = a;
int result = *++m;

(int *)

m
(char)

result

42
(int)

17
(int)

42
(int)

C-Programming Review: Pointers & Arrays page 12

Example: initializing an array
#define N_VALUES 5

float values[N_VALUES];

float *vp;

for (vp = &values[0]; vp < &values[N_VALUES];)

*vp++ = 0;

(float *)

vp

(float) (float) (float) (float) (float)

&values[0]
&values
[N_VALUES]

values

(float [])
0

(float)

0
(float)

0
(float)

0
(float)

0
(float) (done!)

C-Programming Review: Pointers & Arrays page 13

Example: strcpy “string copy”
char *strcpy(char *dest, const char *src) {

const char *p;

char *q;

for(p = src, q = dest; *p != '\0'; p++, q++)

*q = *p;

*q = '\0';

return dest;

}

d
(char)

o
(char)

g
(char)

NUL
(char)

(char) (char) (char) (char)

(char *)

src

(char *)

dest

(char *) (char *)p q

d
(char)

o
(char)

g
(char)

NUL
(char)

C-Programming Review: Pointers & Arrays page 14

Review of pointers

 One final time:

 What is a Pointer?

An Address!

C-Programming Review: Pointers & Arrays page 15

C-Programming Review

ARRAYS

C-Programming Review: Pointers & Arrays page 16

Review of arrays

 There are no array variables in C – only array
names
 Each name refers to a constant pointer

C-Programming Review: Pointers & Arrays page 17

Review of arrays

C-Programming Review: Pointers & Arrays page 18

Review of arrays

 There are no array variables in C – only array
names
 Each name refers to a constant pointer
 Space for array elements is allocated at declaration

time
 Can’t change where the array name refers to…

 but you can change the array elements,
via pointer arithmetic

int m[4];

(int [])

m

???
(int)

???
(int)

???
(int)

???
(int)

C-Programming Review: Pointers & Arrays page 19

Subscripts and pointer arithmetic

 array[subscript] equivalent to *(array +
(subscript))

 Strange but true: Given earlier declaration of m,
the expression 2[m] is legal!
 Not only that: it’s equivalent to *(2+m)

*(m+2)

m[2]

C-Programming Review: Pointers & Arrays page 20

Array names and pointer variables,
playing together
int m[3];

int *mid = m + 1;

int *right = mid[1];

int *left = mid[-1];

int *beyond = mid[2];

(int [])

beyond

???
(int)

???
(int)

???
(int)

(int [])

(int [])

(int [])

(int [])

mid

right

left

m
subscript OK
with pointer

variable

compiler may not catch this –
runtime environment certainly won’t

C-Programming Review: Pointers & Arrays page 21

Demotivator Time

Computer Science Department
University of Central Florida

C-Programming Review
Pointers & Arrays

COP 3502 – Computer Science I

	C-Programming Review�Pointers & Arrays
	C-Programming Review
	Review of pointers
	Review of pointers
	Review of pointer variables
	Indirection operator *
	Address operator &
	Pointer arithmetic
	Pointer arithmetic
	Review of pointers
	Pointer arithmetic
	Example: initializing an array
	Example: strcpy “string copy”
	Review of pointers
	C-Programming Review
	Review of arrays
	Review of arrays
	Review of arrays
	Subscripts and pointer arithmetic
	Array names and pointer variables,�playing together
	Demotivator Time
	C-Programming Review�Pointers & Arrays

