More Recursion

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Announcements

- Quiz 1 due tonight by 11:55 PM (9/15/10)
 - It is available starting at 11:00 AM
- Program 2 due tonight by 11:55 PM
- Program 3 is now assigned
 - Uses Recursion
 - MUST use recursion or a SIZEABLE deduction will come off the grade
- Good News:
 - Assignments WILL slow down (not as often)
 - ¹st three assigned and end up being done in first 6 weeks
 - Remaining three are spread out over last 9 weeks

Recursion

What is Recursion? (reminder from last time)

- From the programming perspective:
- Recursion solves large problems by reducing them to smaller problems of the <u>same form</u>
- Recursion is a function that invokes itself
 - Basically <u>splits</u> a problem into <u>one or more SIMPLER</u> versions of itself
 - And we must have a way of stopping the recursion
 - So the function must have some sort of calls or conditional statements that can actually terminate the function

Recursion - Factorial

- Example: Compute Factorial of a Number
 - What is a factorial?
 - 4! = 4 * 3 * 2 * 1 = 24
 - In general, we can say:
 - n! = n * (n-1) * (n-2) * ... * 2 * 1
 - Also, 0! = 1
 - (just accept it!)

Recursion - Factorial

- Example: Compute Factorial of a Number
 - Recursive Solution
 - Mathematically, factorial is already defined recursively
 - Note that each factorial is related to a factorial of the next smaller integer

$$4! = 4^* 3^* 2^* 1 = 4^* (4-1)! = 4^* (3!)$$

- Right?
- Another example:

$$\bullet 10! = 10^*_{I}9^*8^*7^*6^*5^*4^*3^*2^*1$$

 $10! = 10^*(9!)$

This is clear right? Since 9! clearly is equal to 9*8*7*6*5*4*3*2*1

S

Recursion - Factorial

- Example: Compute Factorial of a Number
 - Recursive Solution
 - Mathematically, factorial is already defined recursively
 - Note that each factorial is related to a factorial of the next smaller integer
 - Now we can say, in general, that:
 - n! = n * (n-1)!
 - But we need something else
 - We need a stopping case, or this will just go on and on and on
 - NOT good!
 - We let 0! = 1
 - So in "math terms", we say
 - n! = 1 if n = 0
 - <u>n! = n * (n-1)!</u> if n > 0

Recursion - Factorial

How do we do this recursively?

- We need a function that we will call
 - And this function will then call itself (recursively)

until the stopping case (n = 0)

```
#include <stdio.h>
```

```
void Fact(int n);
int main(void) {
    int factorial = Fact(10);
    printf("%d\n", factorial);
    return 0;
```

```
Here's the Fact Function
int Fact (int n) {
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

This program prints the result of 10*9*8*7*6*5*4*3*2*1:

3628800

G

Recursion - Factorial

Here's what's going on...in pictures

Returns 1

G

Recursion - Factorial

- General Structure of Recursive Functions:
 - What we can determine from previous examples:
 - When we have a problem, we want to break it into chunks
 - Where one of the chunks is a smaller version of the same problem
 - Factorial Example:
 - We utilized the fact that n! = n*(n-1)!
 - And we realized that (n-1)! is, in essence, an easier version of the original problem
 - Right?
 - We all should agree that 9! is a bit easier than 10!

- General Structure of Recursive Functions:
 - What we can determine from previous examples:
 - Eventually, we break down our original problem to such an extent that the <u>small sub-problem becomes quite</u> <u>easy to solve</u>
 - At this point, we don't make more recursive calls
 - Rather, we <u>directly return the answer</u>
 - Or complete whatever task we are doing
 - This allows us to think about a general structure of a recursive function

- General Structure of Recursive Functions:
 - Basic structure has 2 main options:
 - 1) Break down the problem further
 - Into a smaller sub-problem
 - 2) OR, the problem is small enough on its own
 - Solve it
 - In programming, when we have two options, we us an if statement
 - So here are our two constructs of recursive functions

General Structure of Recursive Functions:

2 general constructs:

Construct 1:

```
if (terminating condition) {
    DO FINAL ACTION
}
else {
    Take one step closer to terminating condition
    Call function RECURSIVELY on smaller subproblem
}
```

Functions that return values take on this construct

	-	
More	Recu	irsion
	11000	

General Structure of Recursive Functions:

- 2 general constructs:
- Construct 2:

if (!(terminating condition)) {
 Take a step closer to terminating condition
 Call function RECURSIVELY on smaller subproblem
}

void recursive functions use this construct

Example using Construct 1

- Our function (Sum Integers):
 - Takes in one positive integer parameter, n
 - Returns the sum 1+2+...+n
 - So our recursive function must <u>sum all the integers up</u> <u>until (and including) n</u>
- How do we do this recursively?
 - We need to solve this in such a way that part of the solution is a sub-problem of the EXACT same nature of the original problem.

- Example using Construct 1
 - Our function:
 - Using n as the input, we define the following function
 - f(n) = 1 + 2 + 3 + ... + n
 - Hopefully it is clear that this is our desired function
 - So to make this recursive, can we say:
 - f(n) = 1 + (2 + 3 + ... + n)
 - Does that "look" recursive?
 - Is there a sub-problem that is the EXACT same form as the original problem?
 - NO!
 - 2+3+...+n IS NOT a sub-problem of the form 1+2+...+n

- Example using Construct 1
 - Our function:
 - Using n as the input, we get the following function

• $f(n) = 1 + 2 + 3 + \dots + n$

Let's now try this:

• f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))

- AAAHHH.
- Here we have an expression

■ 1 + 2 + ... + (n-1)

which IS indeed a sub-problem of the same form

- Example using Construct 1
 - Our function:
 - Using n as the input, we get the following function

• $f(n) = 1 + 2 + 3 + \dots + n$

So now we have:

• f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))

- Now, realize the following:
 - f(n) = n + f(n-1)
 - Right?
 - We've defined f(n) to be a function that sums the first n integers

- Example using Construct 1
 - Our function:
 - Using n as the input, we get the following function

• $f(n) = 1 + 2 + 3 + \dots + n$

So now we have:

• f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))

- Now, realize the following:
 - Example:
 - f(10) = 1 + 2 + ... + 10 = 10 + (1 + 2 + ... + 9)
 - And what is (1 + 2 + ... + 9)? It is f(9)!
 - Thus, we say f(10) = 10 + f(9)
 - In general, f(n) = n + f(n-1)

- Example using Construct 1
 - Our function:
 - Using n as the input, we get the following function

• $f(n) = 1 + 2 + 3 + \dots + n$

So now we have:

• f(n) = 1 + 2 + ... + n = n + (1 + 2 + ... + (n-1))

- Now, realize the following:
 - So here is our function, defined recursively
 - f(n) = n + f(n-1)

- Example using Construct 1
 - Our function (now recursive):
 - f(n) = n + f(n-1)
 - Reminder of construct 1:

```
if (terminating condition) {
        DO FINAL ACTION
}
else {
        Take one step closer to terminating condition
        Call function RECURSIVELY on smaller subproblem
}
```

Example using Construct 1

- Our function:
 - f(n) = n + f(n-1)
 - Reminder of construct 1:
 - So we need to determine the terminating condition!
 - We know that f(0) = 0
 - So our terminating condition can be n = 0
 - Additionally, our recursive calls need to return an expression for f(n) in terms of f(k)
 - for some k < n</p>
 - We just found that f(n) = n + f(n-1)
 - So now we can write our actual function...

Example using Construct 1
 Our function:

- Another example using Construct 1
 - Our function:
 - Calculates b^e
 - Some base raised to a power, e
 - The input is the base, b, and the exponent, e
 - So if the input was 2 for the base and 4 for the exponent
 - The answer would be 2⁴ = 16
 - How do we do this recursively?
 - We need to solve this in such a way that part of the solution is a sub-problem of the EXACT same nature of the original problem.

- Another example using Construct 1
 - Our function:
 - Using b and e as input, here is our function

f(b,e) = b^e

So to make this recursive, can we say:

f(b,e) = b^e = b^{*}b^(e-1)

- Does that "look" recursive?
- YES it does!
- Why?
- Cuz the right side is indeed a sub-problem of the original
- We want to evaluate b^e
- And our right side evaluates b^(e-1)

- Another example using Construct 1
 - Our function:
 - f(b,e) = b*b^(e-1)
 - Reminder of construct 1:

```
if (terminating condition) {
        DO FINAL ACTION
}
else {
        Take one step closer to terminating condition
        Call function RECURSIVELY on smaller subproblem
}
```

Another example using Construct 1

- Our function:
 - f(b,e) = b*b^(e-1)
 - Reminder of construct 1:
 - So we need to determine the terminating condition!
 - We know that f(b,0) = b⁰ = 1
 - So our terminating condition can be when e = 1
 - Additionally, our recursive calls need to return an expression for f(b,e) in terms of f(b,k)

for some k < e</p>

- We just found that f(b,e) = b*b^(e-1)
- So now we can write our actual function...

Another example using Construct 1
 Our function:

```
// Pre-conditions: e is greater than or equal to 0.
// Post-conditions: returns b<sup>e</sup>.
int Power(int base, int exponent) {
    if ( exponent == 0 )
        return 1;
    else
        return (base*Power(base, exponent-1));
}
```

Example using Construct 2

- Remember the construct:
 - This is used when the return type is void
- if (!(terminating condition)) {
 Take a step closer to terminating condition
 Call function RECURSIVELY on smaller subproblem
 }

Example using Construct 2

- Our function:
 - Takes in a string (character array)
 - Also takes in an integer, the length of the string
 - The function simply prints the string in REVERSE order
- So what is the terminating condition?
 - We will print the string, in reverse order, character by character
 - So we terminate when there are no more characters left to print
 - The 2nd argument to the function (length) will be reduced until it is 0 (showing no more characters left to print)

- Example using Construct 2
 - Our function:

- What's going on:
 - Let's say the word is "computer"
 - 8 characters long
 - So we print word[7]
 - Which would refer to the "r" in computer

- Example using Construct 2
 - Our function:

- What's going on:
 - We then recursively call the function
 - Sending over two arguments:
 - The string, "computer"
 - And the length, minus 1

- Example using Construct 2
 - Our function:

- What's going on:
 - After the first recursive call, length is now 7
 - Therefore, word[6] is printed
 - Referring to the "e" in computer
 - Then we recurse (again and again) and finish once length <= 0</p>

Brief Interlude: Human Stupidity

More Recursion

G

Recursion – Practice Problem

Practice Problem:

- Write a recursive function that:
 - Takes in two non-negative integer parameters
 - Returns the product of these parameters
 - But it does NOT use multiplication to get the answer
 - So if the parameters are 6 and 4
 - The answer would be 24
- How do we do this not actually using multiplication
- What another way of saying 6*4?
- We are adding 6, 4 times!
- **6*4 = 6 + 6 + 6 + 6**
- So now think of your function...

G

Recursion – Practice Problem

- Practice Problem:
 - Solution:

```
// Precondition: Both parameters are
// non-negative integers.
// Postcondition: The product of the two
// parameters is returned.
function Multiply(int first, int second) {
    if (( second == 0 ) || ( first = 0 ))
        return 0;
    else
        return (first + Multiply(first, second-1));
}
```

- Towers of Hanoi:
 - Here's the problem:
 - There are three vertical poles

- There are 64 disks on tower 1 (left most tower)
 - The disks are arranged with the largest diameter disks at the bottom
- Some monk has the daunting task of moving disks from one tower to another tower
 - Often defined as moving from Tower #1 to Tower #3
 - Tower #2 is just an intermediate pole
 - He can only move ONE disk at a time
 - And he MUST follow the rule of NEVER putting a bigger disk on top of a smaller disk

- Towers of Hanoi:
 - Solution:
 - We must find a recursive strategy
 - Thoughts:
 - Any tower with more than one disk must clearly be moved in pieces
 - If there is just one disk on a pole, then we move it

Recursion – Towers of Hanoi

- Towers of Hanoi:
 - Solution:
 - Irrespective of the number of disks, the following steps MUST be carried out:
 - The bottom disk needs to move to the destination tower
 - 1) So step 1 must be to move all disks above the bottom disk to the intermediate tower
 - 2) In step 2, the bottom disk can now be moved to the destination tower
 - 3) In step 3, the disks that were initially above the bottom disk must now be put back on top
 - Of course, at the destination

Let's look at the situation with only 3 disks

More Recursion	page 39

- Towers of Hanoi:
 - Solution:
 - Step 1:
 - Move 2 disks from start to temp using finish Tower.
 - To understand the recursive routine, let us assume that we know how to solve 2 disk problem, and go for the next step.
 - Meaning, we "know" how to move 2 disks appropriately

- Towers of Hanoi:
 - Solution:
 - Step 2:
 - Move the (remaining) single disk from start to finish
 - This does not involve recursion
 - and can be carried out without using temp tower.
 - In our program, this is just a print statement
 - Showing what we moved and to where

- Towers of Hanoi:
 - Solution:
 - Step 3:
 - Now we are at the last step of the routine.
 - Move the 2 disks from temp tower to finish tower using the start tower
 - This is done recursively

- We had 3 disks requiring seven steps
- 4 disks would require 15 steps
- n disks would require 2ⁿ -1 steps
 - HUGE number

Recursion – Towers of Hanoi

Towers of Hanoi:

Solution:

// Function Prototype
void moveDisks(int n, char start, char finish, char temp);

```
void main() {
    int disk;
    int moves;
    printf("Enter the # of disks you want to play with:");
    scanf("%d",&disk);
    // Print out the # of moves required
    moves = pow(2,disk)-1;
    printf("\nThe No of moves required is=%d \n",moves);
    // Initiate the recursion
    moveDisks(disk,'A','C','B');
```

- Towers of Hanoi:
 Solution:
 - Solution:

```
void moveDisks(int n, char start, char finish, char temp) {
    if (n == 1) {
        printf("Move Disk from %c to %c\n", start, finish);
    }
    else {
        moveDisks(n-1, start, temp, finish);
        printf("Move Disk from %c to %c\n", start, finish);
        moveDisks(n-1, temp, finish, start);
    }
}
```


WASN'T THAT ENCHANTING!

(Sorry, wanted a "word of the day", and this is what I got from the wife!)

More Recursion

Daily Demotivator

More Recursion

More Recursion

Computer Science Department University of Central Florida

COP 3502 – Computer Science I