
Computer Science Department
University of Central Florida

More Recursion

COP 3502 – Computer Science I

More Recursion page 2

Announcements

 Quiz 1 due tonight by 11:55 PM (9/15/10)
 It is available starting at 11:00 AM

 Program 2 due tonight by 11:55 PM
 Program 3 is now assigned

 Uses Recursion
 MUST use recursion or a SIZEABLE deduction

will come off the grade
 Good News:

 Assignments WILL slow down (not as often)
 1st three assigned and end up being done in first 6 weeks
 Remaining three are spread out over last 9 weeks

More Recursion page 3

Recursion

 What is Recursion? (reminder from last time)
 From the programming perspective:
 Recursion solves large problems by reducing

them to smaller problems of the same form
 Recursion is a function that invokes itself

 Basically splits a problem into one or more SIMPLER
versions of itself

 And we must have a way of stopping the recursion
 So the function must have some sort of calls or

conditional statements that can actually terminate the
function

More Recursion page 4

Recursion - Factorial

 Example: Compute Factorial of a Number
 What is a factorial?

 4! = 4 * 3 * 2 * 1 = 24
 In general, we can say:
 n! = n * (n-1) * (n-2) * … * 2 * 1
 Also, 0! = 1

 (just accept it!)

More Recursion page 5

Recursion - Factorial

 Example: Compute Factorial of a Number
 Recursive Solution

 Mathematically, factorial is already defined recursively
 Note that each factorial is related to a factorial of the next

smaller integer

 4! = 4*3*2*1
 Right?
 Another example:
 10! = 10*9*8*7*6*5*4*3*2*1

 10! = 10*

= 4 * (4-1)! = 4 * (3!)

(9!) This is clear right?
Since 9! clearly is equal to
9*8*7*6*5*4*3*2*1

More Recursion page 6

Recursion - Factorial

 Example: Compute Factorial of a Number
 Recursive Solution

 Mathematically, factorial is already defined recursively
 Note that each factorial is related to a factorial of the next

smaller integer

 Now we can say, in general, that:
 n! = n * (n-1)!
 But we need something else

 We need a stopping case, or this will just go on and on and on
 NOT good!

 We let 0! = 1
 So in “math terms”, we say

 n! = 1 if n = 0
 n! = n * (n-1)! if n > 0

More Recursion page 7

Recursion - Factorial

 How do we do this recursively?
 We need a function that we will call

 And this function will then call itself (recursively)
 until the stopping case (n = 0)

 This program prints the result of 10*9*8*7*6*5*4*3*2*1:
 3628800

#include <stdio.h>

void Fact(int n);
int main(void) {

int factorial = Fact(10);
printf(“%d\n”, factorial);
return 0;

}

Here’s the Fact Function
int Fact (int n) {

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

More Recursion page 8

Recursion - Factorial

 Here’s what’s going on…in pictures
#include <stdio.h>

void Fact(int n);
int main(void) {

int factorial = Fact(10);
printf(“%d\n”, factorial);
return 0;

}

Fact(10)
Returns (10*Fact(9))

Fact(9)
Returns (9*Fact(8))

Fact(8)
Returns (8*Fact(7))

Fact(7)
Returns (7*Fact(6))

Fact(6)
Returns (6*Fact(5))

Fact(5)
Returns (5*Fact(4))

Fact(4)
Returns (4*Fact(3))

Fact(3)
Returns (3*Fact(2))

Fact(2)
Returns (2*Fact(1))

Fact(1)
Returns (1*Fact(0))

Fact(0)
Returns 1

More Recursion page 9

Recursion - Factorial

 Here’s what’s going on…in pictures

 Now factorial has the value 3,628,800.

#include <stdio.h>

void Fact(int n);
int main(void) {

int factorial = Fact(10);
printf(“%d\n”, factorial);
return 0;

}

Fact(10)
Returns (10*Fact(9))

Fact(9)
Returns (9*Fact(8))

Fact(8)
Returns (8*Fact(7))

Fact(7)
Returns (7*Fact(6))

Fact(6)
Returns (6*Fact(5))

Fact(5)
Returns (5*Fact(4))

Fact(4)
Returns (4*Fact(3))

Fact(3)
Returns (3*Fact(2))

Fact(2)
Returns (2*Fact(1))

Fact(1)
Returns (1*Fact(0))

Fact(0)
Returns 1

Fact(1)
Returns (1*1)

Fact(2)
Returns (2*1)

Fact(3)
Returns (3*2)

Fact(4)
Returns (4*6)

Fact(5)
Returns (5*24)

Fact(6)
Returns (6*120)

Fact(7)
Returns (7*720)

Fact(8)
Returns (8*5040)

Fact(9)
Returns (9*40320)

Fact(10)
Returns (10*362880)

1

1

2

6

24

120

720

5040

40320

362880

3628800

More Recursion page 10

Recursion: General Structure

 General Structure of Recursive Functions:
 What we can determine from previous examples:

 When we have a problem, we want to break it into
chunks

 Where one of the chunks is a smaller version of the
same problem

 Factorial Example:
 We utilized the fact that n! = n*(n-1)!
 And we realized that (n-1)! is, in essence, an easier

version of the original problem
 Right?
 We all should agree that 9! is a bit easier than 10!

More Recursion page 11

Recursion: General Structure

 General Structure of Recursive Functions:
 What we can determine from previous examples:

 Eventually, we break down our original problem to such
an extent that the small sub-problem becomes quite
easy to solve

 At this point, we don’t make more recursive calls
 Rather, we directly return the answer
 Or complete whatever task we are doing

 This allows us to think about a general structure
of a recursive function

More Recursion page 12

Recursion: General Structure

 General Structure of Recursive Functions:
 Basic structure has 2 main options:
1) Break down the problem further

 Into a smaller sub-problem

2) OR, the problem is small enough on its own
 Solve it

 In programming, when we have two options, we
us an if statement

 So here are our two constructs of recursive
functions

More Recursion page 13

Recursion: General Structure

 General Structure of Recursive Functions:
 2 general constructs:
 Construct 1:

 Functions that return values take on this construct

if (terminating condition) {
DO FINAL ACTION

}
else {

Take one step closer to terminating condition
Call function RECURSIVELY on smaller subproblem

}

More Recursion page 14

Recursion: General Structure

 General Structure of Recursive Functions:
 2 general constructs:
 Construct 2:

 void recursive functions use this construct

if (!(terminating condition)) {
Take a step closer to terminating condition
Call function RECURSIVELY on smaller subproblem

}

More Recursion page 15

Recursion: General Structure

 Example using Construct 1
 Our function (Sum Integers):

 Takes in one positive integer parameter, n
 Returns the sum 1+2+…+n
 So our recursive function must sum all the integers up

until (and including) n

 How do we do this recursively?
 We need to solve this in such a way that part of the

solution is a sub-problem of the EXACT same nature of
the original problem.

More Recursion page 16

Recursion: General Structure

 Example using Construct 1
 Our function:

 Using n as the input, we define the following function
 f(n) = 1 + 2 + 3 + … + n

 Hopefully it is clear that this is our desired function
 So to make this recursive, can we say:
 f(n) = 1 + (2 + 3 + … + n)

 Does that “look” recursive?
 Is there a sub-problem that is the EXACT same form as

the original problem?
 NO!

 2+3+…+n IS NOT a sub-problem of the form 1+2+…+n

?

More Recursion page 17

Recursion: General Structure

 Example using Construct 1
 Our function:

 Using n as the input, we get the following function
 f(n) = 1 + 2 + 3 + … + n

 Let’s now try this:
 f(n) = 1 + 2 + … + n = n + (1 + 2 + … + (n-1))

 AAAHHH.
 Here we have an expression
 1 + 2 + … + (n-1)

 which IS indeed a sub-problem of the same form

More Recursion page 18

Recursion: General Structure

 Example using Construct 1
 Our function:

 Using n as the input, we get the following function
 f(n) = 1 + 2 + 3 + … + n

 So now we have:
 f(n) = 1 + 2 + … + n = n + (1 + 2 + … + (n-1))

 Now, realize the following:
 f(n) = n + f(n-1)
 Right?
 We’ve defined f(n) to be a function that sums the

first n integers

More Recursion page 19

Recursion: General Structure

 Example using Construct 1
 Our function:

 Using n as the input, we get the following function
 f(n) = 1 + 2 + 3 + … + n

 So now we have:
 f(n) = 1 + 2 + … + n = n + (1 + 2 + … + (n-1))

 Now, realize the following:
 Example:

 f(10) = 1 + 2 + … + 10 = 10 + (1 + 2 + … + 9)
 And what is (1 + 2 + … + 9)?
 Thus, we say f(10) = 10 + f(9)
 In general, f(n) = n + f(n-1)

It is f(9)!

More Recursion page 20

Recursion: General Structure

 Example using Construct 1
 Our function:

 Using n as the input, we get the following function
 f(n) = 1 + 2 + 3 + … + n

 So now we have:
 f(n) = 1 + 2 + … + n = n + (1 + 2 + … + (n-1))

 Now, realize the following:
 So here is our function, defined recursively
 f(n) = n + f(n-1)

More Recursion page 21

Recursion: General Structure

 Example using Construct 1
 Our function (now recursive):

 f(n) = n + f(n-1)
 Reminder of construct 1:

if (terminating condition) {
DO FINAL ACTION

}
else {

Take one step closer to terminating condition
Call function RECURSIVELY on smaller subproblem

}

More Recursion page 22

Recursion: General Structure

 Example using Construct 1
 Our function:

 f(n) = n + f(n-1)
 Reminder of construct 1:
 So we need to determine the terminating condition!
 We know that f(0) = 0

 So our terminating condition can be n = 0
 Additionally, our recursive calls need to return an

expression for f(n) in terms of f(k)
 for some k < n

 We just found that f(n) = n + f(n-1)
 So now we can write our actual function…

More Recursion page 23

Recursion: General Structure

 Example using Construct 1
 Our function:

// Pre-condition: n is a positive integer.
// Post-condition: Function returns the sum
// 1 + 2 + ... + n
int sumNumbers(int n) {

if (n == 0)
return 0;

else
return (n + sumNumbers(n-1));

}

More Recursion page 24

Recursion: General Structure

 Another example using Construct 1
 Our function:

 Calculates be

 Some base raised to a power, e
 The input is the base, b, and the exponent, e
 So if the input was 2 for the base and 4 for the exponent

 The answer would be 24 = 16

 How do we do this recursively?
 We need to solve this in such a way that part of the

solution is a sub-problem of the EXACT same nature of
the original problem.

More Recursion page 25

Recursion: General Structure

 Another example using Construct 1
 Our function:

 Using b and e as input, here is our function
 f(b,e) = be

 So to make this recursive, can we say:
 f(b,e) = be = b*b(e-1)

 Does that “look” recursive?
 YES it does!
 Why?
 Cuz the right side is indeed a sub-problem of the original
 We want to evaluate be

 And our right side evaluates b(e-1)

More Recursion page 26

Recursion: General Structure

 Another example using Construct 1
 Our function:

 f(b,e) = b*b(e-1)

 Reminder of construct 1:

if (terminating condition) {
DO FINAL ACTION

}
else {

Take one step closer to terminating condition
Call function RECURSIVELY on smaller subproblem

}

More Recursion page 27

Recursion: General Structure

 Another example using Construct 1
 Our function:

 f(b,e) = b*b(e-1)

 Reminder of construct 1:
 So we need to determine the terminating condition!
 We know that f(b,0) = b0 = 1

 So our terminating condition can be when e = 1
 Additionally, our recursive calls need to return an

expression for f(b,e) in terms of f(b,k)
 for some k < e

 We just found that f(b,e) = b*b(e-1)

 So now we can write our actual function…

More Recursion page 28

Recursion: General Structure

 Another example using Construct 1
 Our function:

// Pre-conditions: e is greater than or equal to 0.
// Post-conditions: returns be.
int Power(int base, int exponent) {

if (exponent == 0)
return 1;

else
return (base*Power(base, exponent-1));

}

More Recursion page 29

Recursion: General Structure

 Example using Construct 2
 Remember the construct:

 This is used when the return type is void

if (!(terminating condition)) {
Take a step closer to terminating condition
Call function RECURSIVELY on smaller subproblem

}

More Recursion page 30

Recursion: General Structure

 Example using Construct 2
 Our function:

 Takes in a string (character array)
 Also takes in an integer, the length of the string
 The function simply prints the string in REVERSE order

 So what is the terminating condition?
 We will print the string, in reverse order, character by

character
 So we terminate when there are no more characters left

to print
 The 2nd argument to the function (length) will be reduced

until it is 0 (showing no more characters left to print)

More Recursion page 31

Recursion: General Structure

 Example using Construct 2
 Our function:

 What’s going on:
 Let’s say the word is “computer”

 8 characters long
 So we print word[7]

 Which would refer to the “r” in computer

void printReverse(char word[], int length) {
if (length > 0) {

printf(“%c”, word[length-1]);
printReverse(word, length-1);

}
}

More Recursion page 32

Recursion: General Structure

 Example using Construct 2
 Our function:

 What’s going on:
 We then recursively call the function
 Sending over two arguments:

 The string, “computer”
 And the length, minus 1

void printReverse(char word[], int length) {
if (length > 0) {

printf(“%c”, word[length-1]);
printReverse(word, length-1);

}
}

More Recursion page 33

Recursion: General Structure

 Example using Construct 2
 Our function:

 What’s going on:
 After the first recursive call, length is now 7
 Therefore, word[6] is printed

 Referring to the “e” in computer
 Then we recurse (again and again) and finish once length <= 0

void printReverse(char word[], int length) {
if (length > 0) {

printf(“%c”, word[length-1]);
printReverse(word, length-1);

}
}

More Recursion page 34

Brief Interlude: Human Stupidity

More Recursion page 35

Recursion – Practice Problem

 Practice Problem:
 Write a recursive function that:

 Takes in two non-negative integer parameters
 Returns the product of these parameters

 But it does NOT use multiplication to get the answer

 So if the parameters are 6 and 4
 The answer would be 24

 How do we do this not actually using multiplication
 What another way of saying 6*4?
 We are adding 6, 4 times!
 6*4 = 6 + 6 + 6 + 6
 So now think of your function…

More Recursion page 36

Recursion – Practice Problem

 Practice Problem:
 Solution:

// Precondition: Both parameters are
// non-negative integers.
// Postcondition: The product of the two
// parameters is returned.
function Multiply(int first, int second) {

if ((second == 0) || (first = 0))
return 0;

else
return (first + Multiply(first, second-1));

}

More Recursion page 37

Recursion – Towers of Hanoi

 Towers of Hanoi:
 Here’s the problem:

 There are three vertical poles
 There are 64 disks on tower 1 (left most tower)

 The disks are arranged with the largest diameter disks at
the bottom

 Some monk has the daunting task of moving disks
from one tower to another tower
 Often defined as moving from Tower #1 to Tower #3

 Tower #2 is just an intermediate pole
 He can only move ONE disk at a time
 And he MUST follow the rule of NEVER putting a bigger

disk on top of a smaller disk

More Recursion page 38

Recursion – Towers of Hanoi

 Towers of Hanoi:
 Solution:

 We must find a recursive strategy
 Thoughts:

 Any tower with more than one disk must clearly be moved
in pieces

 If there is just one disk on a pole, then we move it

start temp finish

More Recursion page 39

Recursion – Towers of Hanoi

 Towers of Hanoi:
 Solution:

 Irrespective of the number of disks, the following steps
MUST be carried out:
 The bottom disk needs to move to the destination tower
1) So step 1 must be to move all disks above the bottom

disk to the intermediate tower
2) In step 2, the bottom disk can now be moved to the

destination tower
3) In step 3, the disks that were initially above the bottom

disk must now be put back on top
 Of course, at the destination

 Let’s look at the situation with only 3 disks

More Recursion page 40

Recursion – Towers of Hanoi

 Towers of Hanoi:
 Solution:

 Step 1:
 Move 2 disks from start to temp using finish Tower.
 To understand the recursive routine, let us assume that we

know how to solve 2 disk problem, and go for the next
step.
 Meaning, we “know” how to move 2 disks appropriately

start temp finish start temp finish

More Recursion page 41

start temp finish start temp finish

Recursion – Towers of Hanoi

 Towers of Hanoi:
 Solution:

 Step 2:
 Move the (remaining) single disk from start to finish
 This does not involve recursion

 and can be carried out without using temp tower.
 In our program, this is just a print statement

 Showing what we moved and to where

More Recursion page 42

start temp finish

 Towers of Hanoi:
 Solution:

 Step 3:
 Now we are at the last step of the routine.
 Move the 2 disks from temp tower to finish tower using the

start tower
 This is done recursively

start temp finish

Recursion – Towers of Hanoi

More Recursion page 43

start temp finish

start

start temp finish

1

start temp finish

2

start temp finish

3

start temp finish

4

Recursion – Towers of Hanoi

More Recursion page 44

start temp finish

6

start temp finish

start temp finish

5

7

Recursion – Towers of Hanoi

 # of steps needed:
 We had 3 disks requiring seven steps
 4 disks would require 15 steps
 n disks would require 2n -1 steps

 HUGE number

More Recursion page 45

 Towers of Hanoi:
 Solution:

Recursion – Towers of Hanoi

// Function Prototype
void moveDisks(int n, char start, char finish, char temp);

void main() {
int disk;
int moves;
printf("Enter the # of disks you want to play with:");
scanf("%d",&disk);
// Print out the # of moves required
moves = pow(2,disk)-1;
printf("\nThe No of moves required is=%d \n",moves);
// Initiate the recursion
moveDisks(disk,'A','C','B');

}

More Recursion page 46

 Towers of Hanoi:
 Solution:

Recursion – Towers of Hanoi

void moveDisks(int n, char start, char finish, char temp) {
if (n == 1) {

printf(“Move Disk from %c to %c\n”, start, finish);
}
else {

moveDisks(n-1, start, temp, finish);
printf(“Move Disk from %c to %c\n”, start, finish);
moveDisks(n-1, temp, finish, start);

}
}

More Recursion page 47

Recursion

WASN’T
THAT

ENCHANTING!
(Sorry, wanted a “word of the day”, and this is what I got from the wife!)

More Recursion page 48

Daily Demotivator

Computer Science Department
University of Central Florida

More Recursion

COP 3502 – Computer Science I

	More Recursion
	Announcements
	Recursion
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion - Factorial
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Recursion: General Structure
	Brief Interlude: Human Stupidity
	Recursion – Practice Problem
	Recursion – Practice Problem
	Recursion – Towers of Hanoi
	Recursion – Towers of Hanoi
	Recursion – Towers of Hanoi
	Recursion – Towers of Hanoi
	Recursion – Towers of Hanoi
	Recursion – Towers of Hanoi
	Slide Number 43
	Slide Number 44
	Recursion – Towers of Hanoi
	Recursion – Towers of Hanoi
	Recursion
	Daily Demotivator
	More Recursion

