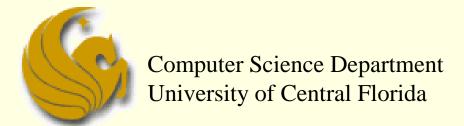
And More Recursion



COP 3502 - Computer Science I

Announcements

- Contact method for instructor
 - Email: jcazalas@cs.ucf.edu
 - This is the email shown on the course website.
 - If you want a semi-quick reply, email this address
 - And NOT through Webcourses
- Next Quiz: possibly on Monday
- Questions on grading for program
 - Most likely the grade given is indeed accurate
 - Check the input and respective output files
 - And the solution, B4 asking "why this" or "why that"

Binary Search – A reminder

Array Search

We are given the following sorted array:

index	0	1	2	3	4	5	6	7	8
value	2	6	19	27	33	37	38	41	118

- We are searching for the value, 19 (for example)
- Remember, we said that you search the middle element
 - If found, you are done
 - If the element in the middle is greater than 19
 - Search to the LEFT (cuz 19 MUST be to the left)
 - If the element in the middle is less than 19
 - Search to the RIGHT (cuz 19 MUST then be to the right)

Binary Search – A reminder

Array Search

We are given the following sorted array:

index	0	1	2	3	4	5	6	7	8
value	2	6	19	27	33	37	38	41	118

- We are searching for the value, 19
- So, we MUST start the search in the middle INDEX of the array.
- In this case:
 - The lowest index is 0
 - The highest index is 8
 - So the middle index is 4

Binary Search

Array Search

- Correct Strategy
 - We would ask, "is the number I am searching for, 19, greater or less than the number stored in index 4?
 - Index 4 stores 33
 - The answer would be "less than"
 - So we would modify our search range to in between index 0 and index 3
 - Note that index 4 is no longer in the search space
 - We then continue this process
 - The second index we'd look at is index 1, since (0+3)/2=1
 - Then we'd finally get to index 2, since (2+3)/2 = 2
 - And at index 2, we would find the value, 19, in the array

Binary Search

Binary Search code:

```
int binsearch(int a[], int len, int value) {
       int low = 0, high = len-1;
       while (low <= high) {</pre>
              int mid = (low+high)/2;
              if (value < a[mid])</pre>
                     high = mid-1;
              else if (value > a[mid])
                      low = mid+1;
              else
                      return 1;
       return 0;
```


Binary Search

- Binary Search code:
 - At the end of each array iteration, all we do is update either low or high
 - This modifies our search region
 - Essentially halving it
 - As we saw previously, this runs in <u>log n</u> time
 - But this iterative code isn't the easiest to read
 - We now look at the recursive code
 - MUCH easier to read and understand

Binary Search – Recursive

- Binary Search using recursion:
 - We need a stopping case:
 - We need to STOP the recursion at some point
 - So when do we stop:
 - 1) When the number is found!
 - Or when the search range is nothing
 - huh?
 - The search range is empty when (low > high)
 - So how let us look at the code...

Binary Search – Recursive

- Binary Search Code (using recursion):
 - We see how this code follows from the explanation of binary search quite easily

```
int binSearch(int *values, int low, int high, int searchval)
    int mid;
    if (low <= high) {
        mid = (low+high)/2;
        if (searchval < values[mid])
            return binSearch(values, low, mid-1, searchval);
        else if (searchval > values[mid])
            return binSearch(values, mid+1, high, searchval);
        else
            return 1;
    }
    return 0;
}
```


Binary Search – Recursive

- Binary Search Code (using recursion):
 - So if the value is found
 - We return 1
 - Otherwise,
 - if (searchval < values[mid])</pre>
 - Then recursively call binSearch to the LEFT
 - else if (searchval > values[mid])
 - Then recursively call binSearch to the RIGHT
 - If low ever becomes greater than high
 - This means that searchval is NOT in the array

Brief Interlude: Human Stupidity

- Example from Previous lecture
 - Our function:
 - Calculates be
 - Some base raised to a power, e
 - The input is the base, b, and the exponent, e
 - So if the input was 2 for the base and 4 for the exponent
 - The answer would be 2⁴ = 16
 - How do we do this recursively?
 - We need to solve this in such a way that part of the solution is a sub-problem of the EXACT same nature of the original problem.

- Example from Previous lecture
 - Our function:
 - Using b and e as input, here is our function
 - $f(b,e) = b^e$
 - So to make this recursive, can we say:
 - $f(b,e) = b^e = b^*b^{(e-1)}$
 - Does that "look" recursive?
 - YES it does!
 - Why?
 - Cuz the right side is indeed a sub-problem of the original
 - We want to evaluate be
 - And our right side evaluates b^(e-1)

- Example from Previous lecture
 - Our function:
 - $f(b,e) = b*b^{(e-1)}$
 - So we need to determine the terminating condition!
 - We know that $f(b,0) = b^0 = 1$
 - So our terminating condition can be when e = 1
 - Additionally, our recursive calls need to return an expression for f(b,e) in terms of f(b,k)
 - for some k < e</p>
 - We just found that f(b,e) = b*b^(e-1)
 - So now we can write our actual function...

- Example from Previous lecture
 - Code:

```
// Pre-conditions: e is greater than or equal to 0.
// Post-conditions: returns be.
int Power(int base, int exponent) {
    if ( exponent == 0 )
        return 1;
    else
        return (base*Power(base, exponent-1));
}
```


- Example from Previous lecture
 - Say we initially call the function with 2 as our base and 8 as the exponent
 - The final return will be
 - return 2*2*2*2*2*2*2*2
 - Which equals 256
 - You notice we have 7 multiplications (exp was 8)
 - The number of multiplications needed is <u>one less</u> than the exponent value
 - So if n was the exponent
 - The # of multiplications needed would be n-1

- Example from Previous lecture
 - This works just fine
 - BUT, it becomes VERY slow for large exponents
 - If the exponent was 10,000, that would be 9,999 mults!
 - How can we do better?
 - One key idea:
 - Remembering the laws of exponents
 - Yeah, algebra...the thing you forgot about two years ago
 - So using the laws of exponents
 - We remember that 2⁸ = 2⁴*2⁴

- Example from Previous lecture
 - One key idea:
 - Remembering the laws of exponents
 - $2^8 = 2^{4*}2^4$
 - Now, if we know 2⁴
 - we can calculate 2⁸ with one multiplication
 - What is 2⁴?
 - $2^4 = 2^{2*}2^2$
 - and $2^2 = 2^*(2)$
 - So... $2^*(2) = 4$, $4^*(4) = 16$, $16^*(16) = 256 = 2^8$
 - So we've calculated 2⁸ using on three multiplications
 - MUCH better than 7 multiplications

- Example of Fast Exponentiation
 - So, in general, we can say:
 - $b^n = b^{n/2} b^{n/2}$
 - So to find bⁿ, we find b^{n/2}
 - HALF of the original amount
 - \blacksquare And to find $b^{n/2}$, we find $b^{n/4}$
 - Again, HALF of b^{n/2}
 - This smells like a log n running time
 - log n number of multiplications
 - Much better than n multiplications
 - But as of now, this only works if n is even

- Example of Fast Exponentiation
 - So, in general, we can say:
 - $b^n = b^{n/2} b^{n/2}$
 - This works when n is even
 - But what if n is odd?
 - Notice that $2^9 = 2^{4*}2^{4*}2$
 - So, in general, we can say:

$$a^{n} = \begin{cases} a^{n/2}(a^{n/2}) & \text{if n is even} \\ a^{n/2}(a^{n/2})(a) & \text{if n is odd} \end{cases}$$

- Example of Fast Exponentiation
 - Also, this method relies on "integer division"
 - We've briefly discussed this
 - Basically if n is 9, then n/2 = 4
 - Integer division
 - Think of it as dividing
 - AND then rounding down, if needed, to the nearest integer
 - So if n is 121, then n/2 = 60
 - Finally, if n is 57, then n/2 = 28
 - Using the same base case as the previous power function, here is the code…

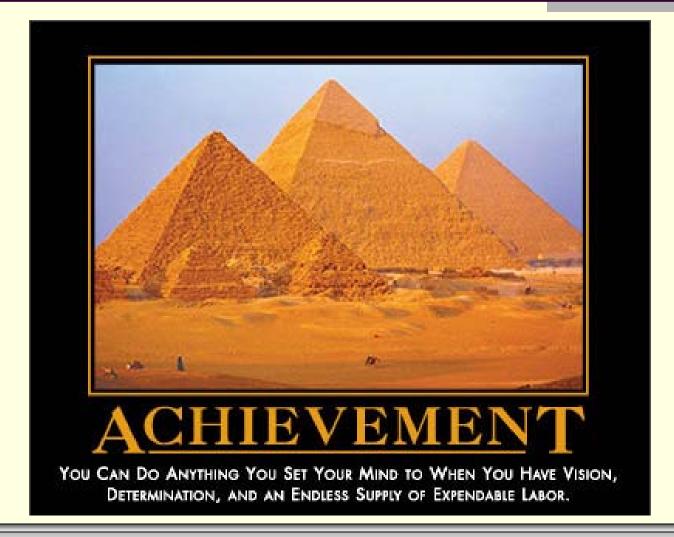
- Example of Fast Exponentiation
 - Code:

```
int powerB(int base, int exp) {
    if (exp == 0)
        return 1;
    else if (exp == 1)
        return base;
    else if (exp%2 == 0)
        return powerB(base*base, exp/2);
    else
        return base*powerB(base, exp-1);
}
```

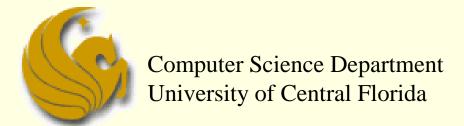

Recursion

WASN'T THAT **BODACIOUS!**

Daily Demotivator



And More Recursion



COP 3502 - Computer Science I