Base Conversions

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Counting Systems – Basic Info

Regular Counting System

- Known as Decimal
- also known as base 10
- Do you know why it is called base 10?
 - If you said, "because it has ten counting digits":
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
 - You are right!
 - To count in base ten, you go from 0 to 9
 - Then you count in combinations of two digits starting with 10 all the way to 99
 - After 99 comes three-digit combinations from 100 999, etc.

Counting Systems – Basic Info

Regular Counting System

Let's examine a decimal number:

Thousands place Hundreds place Tens place Ones place

2713

- When we break down this number, we have:
 - 2 "thousands" + 7 "hundreds" + 1 "tens" + 3 "ones
 - 2000 + 700 + 10 + 3
- Let's see, in detail, how we get this

Counting Systems – Basic Info

Regular Counting System

- The decimal number 2713:
- When we break down this number, we have:
 - 2000 + 700 + 10 + 3
- Where does the 2000 come from?
 - How do we get 2000?
- Mathematically,
 - We said this means we have two "thousands"
 - A thousand is 1000
 - How do we represent 1000, in terms of 10? 10^3
 - So 2000 is the same as 2 x 10³ = 2 x 1000 = 2000

Counting Systems – Basic Info

Regular Counting System

The decimal number 2713:

Similarly,

- The next digit, 7, means that we have 7 "hundreds"
 - We have 7, "100"s
- Mathematically, how do we represent 100 in terms of 10?
 10²
- So 700 comes from 7x10² = 7x100 = 700

Counting Systems – Basic Info

Regular Counting System

- The decimal number 2713:
- Next:
 - The next digit, 1, means that we have 1 "ten"
 - We have 1, "10"
 - Mathematically, we represent this as 10¹
 - So 10 comes from 1x10¹ = 1x10 = 10

Finally:

- The last digit, 3, means that we have 3 "ones"
 - We have 3, "1"s
 - How do we represent 1 in terms of 10? As 10⁰.
- So 3 comes from $3x10^0 = 3x1 = 3$

Counting Systems – Basic Info

Regular Counting System

- The decimal number 2713:
- Putting this all together,
 - $2713_{10} = 2 \times 10^3 + 7 \times 10^2 + 1 \times 10^1 + 3 \times 10^0$
- What we learn from this:
 - Each digit's value is determined by the place it is in
 - Each <u>place</u> is a perfect power of the base
 - With the least significant at the end
 - Counting up, by 1, as you go through the number from right to left

Counting Systems – Basic Info

Other Counting Systems

At first glance, it may seem that this would be the only possible number system

That is, using 10 digits (0 – 9)

- Turns out, the number of digits used is arbitrary
- We could have chosen to use only 5 digits

• 0-4 (base 5 system)

Look at how we determine the value of a number:

• $314_5 = 3 \times 5^2 + 1 \times 5^1 + 4 \times 5^0 = 84_{10}$

- Guess what???
 - We just converted from base 5 to base 10

Counting Systems – Basic Info

CONVERT from ANY base to base 10

- This example illustrates how we can convert from a different base to base 10
- In general, we write the conversion as follows:

 $d_{n-1}d_{n-2}\dots d_2d_1d_{0 \text{ (in base b)}} = d_{n-1}xb^{n-1} + d_{n-2}xb^{n-2} + \dots + d_2xb^2 + d_1xb + d_0$

Note:

- b based to the 1 and 0 powers were simplified above
- Couple quick examples:
 - $781_9 = 7x9^2 + 8x9^1 + 1x9^0 = 640_{10}$
 - $1110101_2 = 1x2^6 + 1x2^5 + 1x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 117_{10}$
 - This last one was the very common base 2 (binary)

Counting Systems – Basic Info

Binary (aka base 2)

- MOST common in computer science
- Why?
 - Cuz all your computer "innards" are represented in binary
 - All software ultimately boils down to a binary representation
- So here's a little binary chart to get you going:

Decimal	Binary	Decimal	Binary
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111
8	1000	16	10000

Counting Systems – Basic Info

Hexadecimal

- The most common base with more than 10 digits
 - Aka base 16
 - Meaning there are <u>16 counting digits</u>
 - WAIT!!!
 - But we <u>only</u> have 10 possible digits to use!
 - 0 through 9
 - So that means we are six digits short!
 - That is correct.
 - It was decided to use the following six additional "digits":
 - A, B, C, D, E, and F

Counting Systems – Basic Info

Hexadecimal

- base 16: use 16 counting digits
 - It was decided to use the following six additional "digits":
 A, B, C, D, E, and F
 - A represents the value 10, B is 11, C is 12, D is 13, E is 14, and F is 15
 - So here is the single digit sequence for base 16:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Counting Systems – Basic Info

Hexadecimal

- Benefit of Hexadecimal:
 - Everything internally (in a computer) is stored in base 2
 - binary
 - However, when we view contents of memory
 - Or when we assign values
 - Such as RGB values for colors
 - We often view numbers in hexadecimal
- So it is important to be familiar with hexadecimal
- Also important to be able to convert to and from hexadecimal to other bases

- Conversion from Hexadecimal to Decimal
 - This is done EXACTLY the same as shown previously

•
$$A3D_{16} = Ax16^2 + 3x16^1 + Dx16^0$$

 $= 10x16^2 + 3x16^1 + 13x16^0 = 2621_{10}.$

$$= 2621_{10}$$

- Conversion from Hexadecimal to Binary
 - Note:
 - 16, as in "base 16", is a PERFECT power of 2
 - This makes conversion to base 2 (binary) very EASY
 - Why?
 - Each hexadecimal digit is perfectly represented by 4 binary digits
 - Does that make sense?
 - A base 16 digit can be up to F (which is 15)
 - So, in order to represent, up to 15, in binary
 - We MUST have 4 binary digits
 - From the chart earlier, we know that 15₁₀ is 1111₂

Conversion from Hexadecimal to Binary

Note:

This allows us to make the following "purty" chart showing the conversions from hexadecimal to binary:

Hex:	0	1	2	3	4	5	6	7
<u>Bin:</u>	0000	0001	0010	0011	0100	0101	0110	0111
Hex:	8	9	А	В	С	D	E	F
Bin:	1000	1001	1010	1011	1100	1101	1110	1111

- Using this, we can easily convert from base 16 to base 2
- A3D₁₆ = 1010 0011 1101₂
- F4BC72₁₆ = 1111 0100 1011 1100 0111 0010 0001 0110₂

Base Conversion Methods

CONVERT from ANY base to base 10

- We already went over this one
- In general, the conversion is as follows:
 - $d_{n-1}d_{n-2}\dots d_2d_1d_{0 \text{ (in base b)}} = d_{n-1}xb^{n-1} + d_{n-2}xb^{n-2} + \dots + d_2xb^2 + d_1xb^1 + d_0xb^0$
- Some quick examples:
 - $246_7 = 2x7^2 + 4x7^1 + 6x7^0 = 132_{10}$
 - $781_9 = 7x9^2 + 8x9^1 + 1x9^0 = 640_{10}$
 - $30122_4 = 3x4^4 + 0x4^3 + 1x4^2 + 2x4^1 + 2x4^0 = 794_{10}$
 - $1110101_2 = 1x2^6 + 1x2^5 + 1x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 117_{10}$
 - This last one was the very common base 2 (binary)

Base Conversion Methods

Conversion from Decimal to Binary

- Given the number 27₁₀
 - Convert it to binary
- Basically, we start by dividing 27 by 2
 - Integer Division!
 - Remember, 27/2 would be 13
 - So, 27/2 is 13 with a remainder of 1
- We then divide 13 by 2
 - 13/2 is 6 with a remainder of 1
- Continue this process until you get 1
 - At that point, you will have 1/2 is 0 with a remainder of 1

Conversion from Decimal to Binary
 Convert 27₁₀ to binary

27/2 = 13	with a remainder of	1
13/2 = 6	with a remainder of	1
6/2 = 3	with a remainder of	
3/2 = 1	with a remainder of	1
1/2 = 0	with a remainder of	1

So, 27_{10} is the same as 11011_2

- You stop when you get 0 as an answer
 - Of course, the final remainder will be 1
- Now, how do you determine the equivalent binary # ?
 - Read the remainders from bottom to top!

Base Conversion Methods

- Conversion from Decimal to Binary
 - Another example: Convert 117₁₀ to binary

117/2 = 58	with a remainder of	1
58/2 = 29	with a remainder of	0
29/2 = 14		1
14/2 = 7	with a remainder of	
7/2 = 3	with a remainder of	1
3/2 = 1	with a remainder of	1
1/2 = 0	with a remainder of	1

So, 117₁₀ is the same as 1110101₂

- You stop when you get 0 as an answer
- Read the remainders from bottom to top to get binary #

Conversion from Decimal to Any Other Base

- The previous example worked great for base 2
- Turns out that this method is not specific to base 2
- Meaning, the same logic can be applied to convert from decimal to ANY other base!
- Let's look at a couple of examples...

Conversion from Decimal to Any Other Base
 Convert 381₁₀ to base 16 (hexadecimal)

381/16 = 23 with a remainder of 13 (D)23/16 = 1 with a remainder of 7 (D)1/16 = 0 with a remainder of 1 (D)

- Start by dividing 381 by the BASE (to convert to)
- SAME idea: you stop when you get 0 as an answer
 - The final remainder could be anything 1 through 15 (F)
- Now, how do you determine the equivalent <u>base 16</u> # ?
 - Read the remainders from bottom to top!

So, 381₁₀ is

the same

as 17D₁₆

Base Conversion Methods

Conversion from Decimal to Any Other Base

Convert 175₁₀ to base 3 (ternary)

175/3 = 58with a remainder of158/3 = 19with a remainder of119/3 = 6with a remainder of16/3 = 2with a remainder of02/3 = 0with a remainder of2

- Again, start by dividing 175 by the BASE (to convert to)
- SAME idea: you stop when you get 0 as an answer
 - In this case, the final remainder could be 1 or 2
- Now, how do you determine the equivalent <u>base 3</u> # ?
 - Read the remainders from bottom to top!

So, 175₁₀ is

the same

as 20111₃

Bad Economic Times Brief Interlude: Human Stupidity

Base Conversion

5

Base Conversion Methods

- Generic Conversion Process
 - Convert from ANY base (call it B1)
 - To ANY to other base (call it B2)
 - where NEITHER of the bases are base 10
 - This is a two step process:
 - 1) Convert from B1 to base 10
 - 2) Convert from base 10 to B2
 - How to do this should be straightforward:
 - You simply utilize <u>both</u> of the methods already shown

Generic Conversion Process

- Convert 125₇ to base 4
- This is a two step process:
- 1) Convert 125₇ to base 10

- $125_7 = 1x7^2 + 2x7^1 + 5x7^0 = 68_{10}$
- Refer to slide 17 for a reminder of how to do this step if there is confusion

Generic Conversion Process
 Convert 125₇ to base 4
 This is a two step process:
 Now, convert 68₁₀ to base 4

Final Answer: 125_7 converts to 1010_4

Solution:

68/4 = 17with a remainder of017/4 = 4with a remainder of14/4 = 1with a remainder of01/4 = 0with a remainder of1

So, 125_7 is the same as 68_{10} , which is the same as 1010_4

Generic Conversion Process

- If you are converting between two bases (B1 & B2) that are BOTH a perfect power of 2
- You can use the method we just showed.
- But the following process works more quickly:
- 1) Convert from B1 to base 2
- 2) Convert from base 2 to B2
- Part 1 should be straightforward:
- We just need to briefly look at Part 2

Base Conversion Methods

Generic Conversion Process

- Convert A3D₁₆ to base 8 (octal)
 - Notice they are both perfect powers of 2
- This is a two step process:
- 1) Convert A3D₁₆ to base 2

- For this part, we just put the binary equivalent of each digit
- A3D₁₆ = 1010 0011 1101₂

Base Conversion Methods

Generic Conversion Process

- Convert A3D₁₆ to base 8 (octal)
 - Notice they are both perfect powers of 2
- This is a two step process:
- 2) Now, convert 1010 0011 1101₂ to base 8

- Think:
 - How many possible counting digits are there in base 8?
 - DUH!
 - There are 8! Hence base 8! They are 0 through 7.

Base Conversion Methods

Generic Conversion Process

- Convert A3D₁₆ to base 8 (octal)
 - Notice they are both perfect powers of 2
- This is a two step process:
- 2) Now, convert 1010 0011 1101₂ to base 8

- Think:
 - Now, how many binary digits does it take to perfectly represent one octal (base 8) digit?
 - Three!
 - Why? Cuz 8 = 2³

Base Conversion Methods

Generic Conversion Process

- Convert A3D₁₆ to base 8 (octal)
 - Notice they are both perfect powers of 2
- This is a two step process:
- 2) Now, convert 1010 0011 1101₂ to base 8

- So group the binary digits, in SETS OF THREE
 - From right to left
- Then convert each set of three binary digits to its octal equivalent

Base Conversion Methods

Generic Conversion Process

- Convert A3D₁₆ to base 8 (octal)
 - Notice they are both perfect powers of 2
- This is a two step process:
- 2) Now, convert 1010 0011 1101₂ to base 8

Solution:

1010 0011 1101₂

Final Answer: A3D₁₆ converts to 5075₈

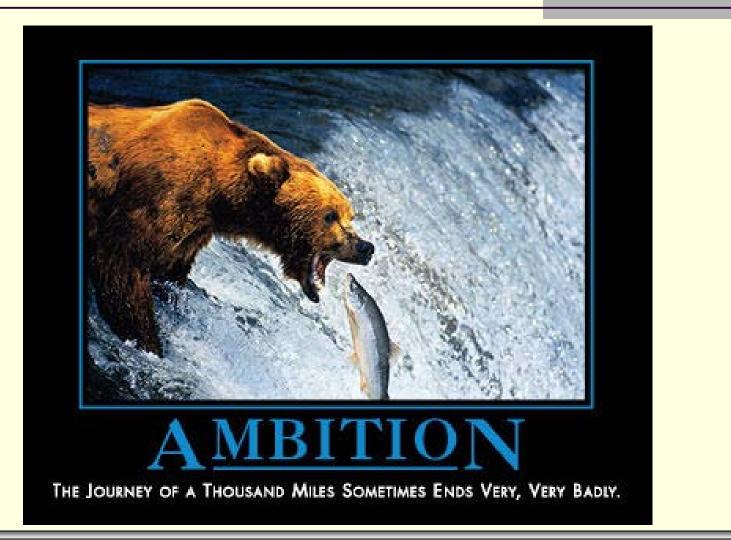
- Just rewrite this with different spacing: <u>101 000 111 101</u>
- Convert each set of three digits:
- 5075₈

Base Conversions

We're done! WASN'T THAT **STUPENDOUS!**

Base Conversion

Daily Demotivator



Base Conversion

Base Conversions

Computer Science Department University of Central Florida

COP 3502 – Computer Science I