
Computer Science Department
University of Central Florida

Algorithm
Analysis

COP 3502 – Computer Science I

Algorithm Analysis page 2

Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 Thus far, we’ve looked at a few different

algorithms:
 Max # of 1’s
 Linear Search vs Binary Search
 Sorted List Matching Problem
 and others

 But we haven’t really examined them, in detail,
regarding their efficiency or speed

 This is one of the main goals of this class!

Algorithm Analysis page 3

Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 We will use Order Notation to approximate two

things about algorithms:
1) How much time they take
2) How much memory (space) they use
 Note:

 It is nearly impossible to figure out the exact amount of
time an algorithm will take

 Each algorithm gets translated into smaller and
smaller machine instructions

 Each of these instructions take various amounts of
time to execute on different computers

Algorithm Analysis page 4

Order Analysis

 Judging the Efficiency/Speed of an Algorithm
 Note:

 Also, we want to judge algorithms independent of their
implementation

 Thus, rather than figure out an algorithm’s exact running
time
 We only want an approximation (Big-O approximation)

 Assumptions: we assume that each statement and each
comparison in C takes some constant amount of time

 Also, most algorithms have some type of input
 With sorting, for example, the size of the input (typically

referred to as n) is the number of numbers to be sorted
 Time and space used by an algorithm function of the input

Algorithm Analysis page 5

Big-O Notation

 What is Big O?
 Sounds like a rapper.?.

 If it were only that simple!

 Big O comes from Big-O Notation
 In C.S., we want to know how efficient an algorithm

is…how “fast” it is
 More specifically…we want to know how the

performance of an algorithm responds to changes
in problem size

Algorithm Analysis page 6

Big-O Notation

 What is Big O?
 The goal is to provide a qualitative insight on the

of operations for a problem size of n elements.
 And this total # of operations can be described

with a mathematical expression in terms of n.
 This expression is known as Big-O

 The Big-O notation is a way of measuring the
order of magnitude of a mathematical
expression.

 O(n) means “of the order of n”

Algorithm Analysis page 7

Big-O Notation

 Consider the expression:


 How fast is this “growing”?
 There are three terms:

 the 4n2, the 3n, and the 10
 As n gets bigger, which term makes it get larger fastest?

 Let’s look at some values of n and see what happens?

1034)(2 ++= nnnf

n 4n2 3n 10
1 4 3 10
10 400 30 10
100 40,000 300 10
1000 4,000,000 3,000 10
10,000 400,000,000 30,000 10
100,000 40,000,000,000 300,000 10
1,000,000 4,000,000,000,000 3,000,000 10

Algorithm Analysis page 8

Big-O Notation

 Consider the expression:


 How fast is this “growing”?
 Which term makes it get larger fastest?

 As n gets larger and larger, the 4n2 term DOMINATES the
resulting answer

 f(1,000,000) = 4,000,003,000,010

 The idea of behind Big-O is to reduce the
expression so that it captures the qualitative
behavior in the simplest terms.

1034)(2 ++= nnnf

Algorithm Analysis page 9

Big-O Notation

 Consider the expression:
 How fast is this “growing”?

 Look at VERY large values of n
 eliminate any term whose contribution to the total ceases to be

significant as n get larger and larger
 of course, this also includes constants, as they little to no effect

with larger values of n
 Including constant factors (coefficients)

 So we ignore the constant 10
 And we can also ignore the 3n
 Finally, we can eliminate the constant factor, 4, in front of n2

 We can approximate the order of this function, f(n), as n2

 We can say, O(4n2 + 3n + 10) = O(n2)
 In conclusion, we say that f(n) takes O(n2) steps to execute

1034)(2 ++= nnnf

Algorithm Analysis page 10

Big-O Notation

 Consider the expression:
 How fast is this “growing”?

 We can say, O(4n2 + 3n + 10) = O(n2)
 Till now, we have one function:

 f(n) = 4n2 + 3n + 10
 Let us make a second function, g(n)

 It’s just a letter right? We could have called it r(n) or x(n)
 Don’t get scared about this

 Now, let g(n) equal n2

 g(n) = n2

 So now we have two functions: f(n) and g(n)
 We said (above) that O(4n2 + 3n + 10) = O(n2)

 Similarly, we can say that the order of f(n) is O[g(n)].

1034)(2 ++= nnnf

Algorithm Analysis page 11

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 Think about the two functions we just had:

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 We agreed that O(4n2 + 3n + 10) = O(n2)
 Which means we agreed that the order of f(n) is O(g(n)

 That’s all this definition says!!!
 f(n) is big-O of g(n), if there is a c

 (c is a constant)
 such that f(n) is not larger than c*g(n) for sufficiently

large values of n (greater than N)

Brace yourself!

Algorithm Analysis page 12

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 Think about the two functions we just had:

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 f is big-O of g, if there is a c such that f is not larger than
c*g for sufficiently large values of n (greater than N)
 So given the two functions above, does there exist some

constant, c, that would make the following statement true?
 f(n) <= c*g(n)
 4n2 + 3n + 10 <= c*n2

 If there does exist this c, then f(n) is O(g(n))
 Let’s go see if we can come up with the constant, c

Algorithm Analysis page 13

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 Clearly, c cannot be 4 or less
 Cause even if it was 4, we would have:

 4n2 + 3n + 10 <= 4n2

 This is NEVER true for any positive value of n!
 So c must be greater than 4

 Let us try with c being equal to 5
 4n2 + 3n + 10 <= 5n2

Algorithm Analysis page 14

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5

Algorithm Analysis page 15

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20

Algorithm Analysis page 16

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45

Algorithm Analysis page 17

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?

 For n = 1 – 4, this statement is NOT true

n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80

But now let’s try
larger values of n.

Algorithm Analysis page 18

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80
5 4(25) + 3(5) + 10 = 125 5(25) = 125

Algorithm Analysis page 19

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5
2 4(4) + 3(2) + 10 = 32 5(4) = 20
3 4(9) + 3(3) + 10 = 55 5(9) = 45
4 4(16) + 3(4) + 10 = 86 5(16) = 80
5 4(25) + 3(5) + 10 = 125 5(25) = 125
6 4(36) + 3(6) + 10 = 172 5(36) = 180

Algorithm Analysis page 20

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 4n2 + 3n + 10 <= 5n2

 For what values of n, if ANY at all, is this true?
 So when n = 5, the statement finally becomes true
 And when n > 5, it remains true!

 So our constant, 5, works for all n >= 5.

Algorithm Analysis page 21

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 PROBLEM: Given our two functions,

 f(n) = 4n2 + 3n + 10, and g(n) = n2

 Find the c such that 4n2 + 3n + 10 <= c*n2

 So our constant, 5, works for all n >= 5.
 Therefore, f(n) is O(g(n)) per our definition!
 Why?
 Because there exists positive integers, c and N,

 Just so happens in this case that c = 5 and N = 5
 such that f(n) <= c*g(n).

Who
actually
got that?

Algorithm Analysis page 22

Big-O Notation

 Definition:
 f(n) is O[g(n)] if there exists positive integers c

and N, such that f(n) <= c*g(n) for all n>=N.
 What can we take from this?

 That Big-O is hard as #$%q@$^&!!!

 No, but seriously…
 What we can gather is that:
 c*g(n) is an upper bound on the value of f(n).

 It represents the worst possible scenario of running time.
 The number of operations is, at worst, proportional to

g(n) for all large values of n.

Algorithm Analysis page 23

Big-O Notation

 Some basic examples:
 What is the Big-O of the following functions:

 f(n) = 4n2 +3n +10
 Answer: O(n2)

 f(n) = 76,756,234n2 + 427,913n + 7
 Answer: O(n2)

 f(n) = 74n8 - 62n5 - 71562n3 + 3n2 – 5
 Answer: O(n8)

 f(n) = 42n4*(12n6 - 73n2 + 11)
 Answer: O(n10)

 f(n) = 75n*logn – 415
 Answer: O(n*logn)

Algorithm Analysis page 24

Big-O Notation

 Summing up the basic properties for
determining the order of a function:
 If you’ve got multiple functions added together,

the fastest growing one determines the order
 Multiplicative constants don’t affect the order
 If you’ve got multiple functions multiplied together,

the overall order is their individual orders
multiplied together

Algorithm Analysis page 25

Big-O Notation

 Quick Example of Analyzing Code:
 This is just to show you how we use Big-O

 we‘ll do more of these (a lot more) on Monday

 Use big-O notation to analyze the time
complexity of the following fragment of C code:
for (k=1; k<=n/2; k++) {

sum = sum + 5;

}

for (j = 1; j <= n*n; j++) {

delta = delta + 1;

}

Algorithm Analysis page 26

Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 We care about the total number of REPETITIVE
operations.
 Remember, we said we care about the running time for

LARGE values of n
 So in a for loop with n as part of the comparison value

determining when to stop
 Whatever is INSIDE that loop will be executed a LOT of

times
 So we examine the code within this loop and see how

many operations we find
 When we say operations, we’re referring to mathematical

operations such as +, -, *, /, etc.

for (k=1; k<=n/2; k++)

Algorithm Analysis page 27

Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 The number of operations executed by these loops is
the sum of the individual loop operations.

 We have 2 loops,
 The first loop runs n/2 times
 Each iteration of the first loop results in one operation

 The + operation in: sum = sum + 5;
 So there are n/2 operations in the first loop
 The second loop runs n2 times
 Each iteration of the second loop results in one operation

 The + operation in: delta = delta + 1;
 So there are n2 operations in the second loop.

Algorithm Analysis page 28

Big-O Notation

 Quick Example of Analyzing Code:
 So look at what’s going on in the code:

 The number of operations executed by these loops is
the sum of the individual loop operations.

 The first loop has n/2 operations
 The second loop has n2 operations
 They are NOT nested loops.

 One loop executes AFTER the other completely finishes
 So we simply ADD their operations
 The total number of operations would be n/2 + n2

 In Big-O terms, we can express the number of
operations as O(n2)

Algorithm Analysis page 29

Brief Interlude: Human Stupidity

Algorithm Analysis page 30

Big-O Notation

 Common orders (listed from slowest to fastest
growth) Function Name

1 Constant

log n Logarithmic

n Linear

n log n Poly-log

n2 Quadratic

n3 Cubic

2n Exponential

n! Factorial

Algorithm Analysis page 31

Big-O Notation

 O(1) or “Order One”: Constant time
 does not mean that it takes only one operation
 does mean that the work doesn’t change as n

changes
 is a notation for “constant work”
 An example would be finding the smallest

element in a sorted array
 There’s nothing to search for here
 The smallest element is always at the beginning of a

sorted array
 So this would take O(1) time

Algorithm Analysis page 32

Big-O Notation

 O(n) or “Order n”: Linear time
 does not mean that it takes n operations
 does mean that the work changes in a way that is

proportional to n
 Example:

 If the input size doubles, the running time also doubles

 is a notation for “work grows at a linear rate”
 You usually can’t really do a lot better than this for

most problems we deal with
 After all, you need to at least examine all the data right?

Algorithm Analysis page 33

Big-O Notation

 O(n2) or “Order n2 ”: Quadratic time
 If input size doubles, running time increases by

a factor of 4
 O(n3) or “Order n3 ”: Cubic time

 If input size doubles, running time increases by
a factor of 8

 O(nk): Other polynomial time
 Should really try to avoid high order polynomial

running times
 However, it is considered good from a theoretical

standpoint

Algorithm Analysis page 34

Big-O Notation

 O(2n) or “Order 2n ”: Exponential time
 more theoretical rather than practical interest

because they cannot reasonably run on typical
computers for even for moderate values of n.

 Input sizes bigger than 40 or 50 become
unmanageable
 Even on faster computers

 O(n!): even worse than exponential!
 Input sizes bigger than 10 will take a long time

Algorithm Analysis page 35

Big-O Notation

 O(n logn):
 Only slightly worse than O(n) time

 And O(n logn) will be much less than O(n2)
 This is the running time for the better sorting

algorithms we will go over (later)

 O(log n) or “Order log n”: Logarithmic time
 If input size doubles, running time increases

ONLY by a constant amount
 any algorithm that halves the data remaining to

be processed on each iteration of a loop will be
an O(log n) algorithm.

Algorithm Analysis page 36

Big-O Notation – Problems

 Practical Problems that can be solved utilizing
order notation:
 Example:

 You are told that algorithm A runs in O(n) time
 You are also told the following:

 For an input size of 10
 The algorithm runs in 2 milliseconds

 As a result, you can expect that it will take 100
milliseconds to run on an input size of 500
 Notice the input size jumped by a multiple of 50

 From 10 to 500
 Therefore, given a O(n) algorithm, the running time should

also jump by a multiple of 50, which it does!

Algorithm Analysis page 37

Big-O Notation – Problems

 Practical Problems that can be solved utilizing
order notation:
 General process of solving these problems:

 We know that Big-O is NOT exact
 It’s an upper bound on the actual running time

 So when we say that an algorithm runs in O(f(n)) time,
 Assume the EXACT running time is c*f(n)

 where c is some constant
 Using this assumption,

 we can use the information in the problem to solve for c
 Then we can use this c to answer the question being asked

 Examples will clarify…

Algorithm Analysis page 38

Big-O Notation – Problems

 Practical Problems that can be solved utilizing
order notation:
 Example 1: Algorithm A runs in O(n2) time

 For an input size of 4, the running time is 10 milliseconds
 How long will it take to run on an input size of 16?
 Let T(n) = c*n2

 T(n) refers to the running time on input size n
 Now, plug in the given data, and find the value for c!

 T(4) = c*42 = 10 milliseconds
 Therefore, c = 10/16 milliseconds

 Now, answer the question by using c and solving T(16)
 T(16) = c*162 = (10/16)*162 = 160 milliseconds

Algorithm Analysis page 39

Big-O Notation – Problems

 Practical Problems that can be solved utilizing
order notation:
 Example 2: Algorithm A runs in O(log2n) time

 For an input size of 16, the running time is 28 milliseconds
 How long will it take to run on an input size of 64?
 Let T(n) = c*log2n

 Now, plug in the given data, and find the value for c!
 T(16) = c*log216 = 28 milliseconds

 c*4 = 28 milliseconds
 Therefore, c = 7 milliseconds

 Now, answer the question by using c and solving T(64)
 T(64) = c*log264 = 7*log264 = 7*6 = 42 milliseconds

Algorithm Analysis page 40

Base Conversions

WASN’T
THAT

MARVELOUS!

Algorithm Analysis page 41

Daily Demotivator

Computer Science Department
University of Central Florida

Algorithm
Analysis

COP 3502 – Computer Science I

	Algorithm Analysis
	Order Analysis
	Order Analysis
	Order Analysis
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Brief Interlude: Human Stupidity
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation
	Big-O Notation – Problems
	Big-O Notation – Problems
	Big-O Notation – Problems
	Big-O Notation – Problems
	Base Conversions
	Daily Demotivator
	Algorithm Analysis

