
Computer Science Department
University of Central Florida

More Algorithm
Analysis

COP 3502 – Computer Science I

More Algorithm Analysis page 2

Announcements

 Quiz 2 today
 Available until 11:55 PM

 You CANNOT go back on questions

 Program 3 Due Wednesday
 Exam 1 on Friday, 10/1/2010

 Extensions on stuff?
 Short answer: not gonna happen

More Algorithm Analysis page 3

Announcements

 Comment on extension requests:
 # of hours expected of a full-time college student:

 Just like a full-time job: around 40 or 50 or so hours/week

 It is said that for every hour in class,
 You can expect up to three hours of work outside class

 Now do the math:
 If you are registered for 12 credits

 That adds up to 36 hours of outside-class work per week
 For a total of 48 hours per week

 Now ask yourself:
 For this class, do you really put in 9 hours/week outside of

the class?

More Algorithm Analysis page 4

Announcements

 Comment on extension requests:
 Now ask yourself:

 For this class, do you really put in 9 hours/week outside of
the class?

 Not even close!
 If there’s no program due, the average student puts in

ZERO hours per week outside class
 They don’t even review notes for a MINUTE!

 So how long then does a program take?
 Let’s even say 10 hours (which is high for most students)
 Since they are due every two weeks (or so)
 That adds up to 5 hours per week that you invest (at a max)

 Leaving still 4 hours per week of study time!

More Algorithm Analysis page 5

Big-O Notation

 What is Big O?
 Big O comes from Big-O Notation

 In C.S., we want to know how efficient an algorithm
is…how “fast” it is

 More specifically…we want to know how the
performance of an algorithm responds to changes
in problem size

 The goal is to provide a qualitative insight on the # of
operations for a problem size of n elements.

 And this total # of operations can be described with a
mathematical expression in terms of n.
 This expression is known as Big-O

More Algorithm Analysis page 6

More Algorithm Analysis

 Examples of Analyzing Code:
 We now go over many examples of code

fragments
 Each of these functions will be analyzed for their

runtime in terms of the variable n
 Utilizing the idea of Big-O,

 determine the Big-O running time of each

More Algorithm Analysis page 7

More Algorithm Analysis

 Example 1:
 Determine the Big O running time of the following

code fragment:

for (k = 1; k <= n/2; k++) {
sum = sum + 5;

}
for (j = 1; j <= n*n; j++) {

delta = delta + 1;
}

More Algorithm Analysis page 8

More Algorithm Analysis

 Example 1:
 So look at what’s going on in the code:

 We care about the total number of REPETITIVE
operations.
 Remember, we said we care about the running time for

LARGE values of n
 So in a for loop with n as part of the comparison value

determining when to stop
 Whatever is INSIDE that loop will be executed a LOT of

times
 So we examine the code within this loop and see how

many operations we find
 When we say operations, we’re referring to mathematical

operations such as +, -, *, /, etc.

for (k=1; k<=n/2; k++)

More Algorithm Analysis page 9

More Algorithm Analysis

 Example 1:
 So look at what’s going on in the code:

 The number of operations executed by these loops is
the sum of the individual loop operations.

 We have 2 loops,
 The first loop runs n/2 times
 Each iteration of the first loop results in one operation

 The + operation in: sum = sum + 5;
 So there are n/2 operations in the first loop
 The second loop runs n2 times
 Each iteration of the second loop results in one operation

 The + operation in: delta = delta + 1;
 So there are n2 operations in the second loop.

More Algorithm Analysis page 10

More Algorithm Analysis

 Example 1:
 So look at what’s going on in the code:

 The number of operations executed by these loops is
the sum of the individual loop operations.

 The first loop has n/2 operations
 The second loop has n2 operations
 They are NOT nested loops.

 One loop executes AFTER the other completely finishes
 So we simply ADD their operations
 The total number of operations would be n/2 + n2

 In Big-O terms, we can express the number of
operations as O(n2)

More Algorithm Analysis page 11

More Algorithm Analysis

 Example 2:
 Determine the Big O running time of the following

code fragment:

int func1(int n) {
int i, j, x = 0;
for (i = 1; i <= n; i++) {

for (j = 1; j <= n; j++) {
x++;

}
}
return x;

}

More Algorithm Analysis page 12

More Algorithm Analysis

 Example 2:
 So look at what’s going on in the code:

 We care about the total number of REPETITIVE
operations

 We have two loops
 AND they are NESTED loops

 The outer loop runs n times
 From i = 1 up through n
 How many operations are performed at each iteration?

 Answer is coming…

 The inner loop runs n times
 From j = 1 up through n
 And only one operation (x++) is performed at each iteration

More Algorithm Analysis page 13

More Algorithm Analysis

 Example 2:
 So look at what’s going on in the code:

 Let’s look at a couple of iterations of the OUTER loop:
 When i = 1, what happens?

 The inner loop runs n times
 Resulting in n operations from the inner loop

 Then, i gets incremented and it becomes equal to 2
 When i = 2, what happens?

 Again, the inner loop runs n times
 Again resulting in n operations from the inner loop

 We notice the following:
 For EACH iteration of the OUTER loop,
 The INNER loop runs n times

 Resulting in n operations

More Algorithm Analysis page 14

More Algorithm Analysis

 Example 2:
 So look at what’s going on in the code:

 And how many times does the outer loop run?
 n times

 So the outer loop runs n times
 And for each of those n times, the inner loop also runs

n times
 Resulting in n operations

 So we have n operations per iteration of OUTER loop
 And outer loop runs n times
 Finally, we have n*n as the number of operations
 We approximate the running time as O(n2)

More Algorithm Analysis page 15

More Algorithm Analysis

 Example 3:
 Determine the Big O running time of the following

code fragment:

int func3(int n) {
int i, x = 0;
for (i = 1; i <= n; i++)

x++;
for (i = 1; i<=n; i++)

x++;
return x;

}

More Algorithm Analysis page 16

More Algorithm Analysis

 Example 3:
 So look at what’s going on in the code:

 We care about the total number of REPETITIVE
operations

 We have two loops
 They are NOT nested loops

 The first loop runs n times
 From i = 1 up through n
 only one operation (x++) is performed at each iteration

 How many times does the second loop run?
 Notice that i is indeed reset to 1 at the beginning of the loop
 Thus, the second loop runs n times, from i = 1 up through n
 And only one operation (x++) is performed at each iteration

More Algorithm Analysis page 17

More Algorithm Analysis

 Example 3:
 So look at what’s going on in the code:

 Again, the loops are NOT nested
 So they execute sequentially (one after the other)

 Therefore:
 Our total runtime is on the order of n+n
 Which of course equals 2n

 Now, in Big O notation
 We approximate the running time as O(n)

More Algorithm Analysis page 18

More Algorithm Analysis

 Example 4:
 Determine the Big O running time of the following

code fragment:

int func4(int n) {
while (n > 0) {

printf(“%d”, n%2);
n = n/2;

}
}

More Algorithm Analysis page 19

More Algorithm Analysis

 Example 4:
 So look at what’s going on in the code:

 We have one while loop
 You can’t just look at this loop and say it iterates n times or

n/2 times
 Rather, it continues to execute as long as n is greater than 0
 The question is: how many iterations will that be?

 Within the while loop
 The last line of code divides the input, n, by 2
 So n is halved at each iteration of the while loop

 If you remember, we said this ends up running in log n
time

 Now let’s look at how this works

More Algorithm Analysis page 20

More Algorithm Analysis

 Example 4:
 So look at what’s going on in the code:

 For the ease of the analysis, we make a new variable
 originalN:

 originalN refers to the value originally stored in the input, n
 So if n started at 100, originalN will be equal to 100

 The first time through the loop
 n gets set to originalN/2

 If the original n was 100, after one iteration n would be 100/2

 The second time through the loop
 n gets set to originalN/4

 The third time through the loop
 n gets set to originalN/8

Notice:
After three iterations, n
gets set to originalN/23

More Algorithm Analysis page 21

More Algorithm Analysis

 Example 4:
 So look at what’s going on in the code:

 In general, after k iterations
 n gets set to originalN/2k

 The algorithm ends when originalN/2k = 1, approximately
 We now solve for k
 Why?

 Because we want to find the total # of iterations
 Multiplying both sides by 2k, we get originalN = 2k

 Now, using the definition of logs, we solve for k
 k = log originalN

 So we approximate the running time as O(log n)

More Algorithm Analysis page 22

Brief Interlude: Human Stupidity

More Algorithm Analysis page 23

More Algorithm Analysis

 Example 5:
 Determine the Big O running time of the following

code fragment:

int func5(int** array, int n) {
int i = 0, j = 0;
while (i < n) {

while (j < n && array[i][j] == 1)
j++;

i++;
}
return j;

}

More Algorithm Analysis page 24

More Algorithm Analysis

 Example 5:
 So look at what’s going on in the code:

 At first glance, we see two NESTED loops
 This can often indicate an O(n2) algorithm

 But we need to look closer to confirm
 Focus on what’s going on with i and j

int func5(int** array, int n) {
int i = 0, j = 0;
while (i < n) {

while (j < n && array[i][j] == 1)
j++;

i++;
}

More Algorithm Analysis page 25

More Algorithm Analysis

 Example 5:
 So look at what’s going on in the code:

 Focus on what’s going on with i and j
 i and j clearly increase (from the j++ and i++)
 BUT, they never decrease
 AND, neither ever gets reset to 0

int func5(int** array, int n) {
int i = 0, j = 0;
while (i < n) {

while (j < n && array[i][j] == 1)
j++;

i++;
}

More Algorithm Analysis page 26

More Algorithm Analysis

 Example 5:
 So look at what’s going on in the code:

 And the OUTER while loop ends once i gets to n
 So, what does this mean?

 The statement i++ can never run more than n times
 And the statement j++ can never run more than n times

int func5(int** array, int n) {
int i = 0, j = 0;
while (i < n) {

while (j < n && array[i][j] == 1)
j++;

i++;
}

More Algorithm Analysis page 27

More Algorithm Analysis

 Example 5:
 So look at what’s going on in the code:

 The MOST number of times these two statements can
run (combined) is 2n times

 So we approximate the running time as O(n)

int func5(int** array, int n) {
int i = 0, j = 0;
while (i < n) {

while (j < n && array[i][j] == 1)
j++;

i++;
}

More Algorithm Analysis page 28

More Algorithm Analysis

 Example 6:
 Determine the Big O running time of the following

code fragment:
 What’s the one big difference here???

int func6(int** array, int n) {
int i = 0, j;
while (i < n) {

j = 0;
while (j < n && array[i][j] == 1)

j++;
i++;

}
return j;

}

More Algorithm Analysis page 29

More Algorithm Analysis

 Example 6:
 So look at what’s going on in the code:

 The difference is that we RESET j to 0 a the beginning
of the OUTER while loop

int func6(int** array, int n) {
int i = 0, j;
while (i < n) {

j = 0;
while (j < n && array[i][j] == 1)

j++;
i++;

}
return j;

}

More Algorithm Analysis page 30

More Algorithm Analysis

 Example 6:
 So look at what’s going on in the code:

 The difference is that we RESET j to 0 a the beginning
of the OUTER while loop

 How does that change things?
 Now j can iterate from 0 to n for EACH iteration of the

OUTER while loop
 For each value of i

 This is similar to the 2nd example shown
 So we approximate the running time as O(n2)

More Algorithm Analysis page 31

More Algorithm Analysis

 Example 7:
 Determine the Big O running time of the following

code fragment:

int func7(int A[], int sizeA, int B[], int sizeB) {
int i, j;
for (i = 0; i < sizeA; i++)

for (j = 0; j < sizeB; j++)
if (A[i] == B[j])

return 1;
return 0;

}

More Algorithm Analysis page 32

More Algorithm Analysis

 Example 7:
 So look at what’s going on in the code:

 First notice that the runtime here is NOT in terms of n
 It will be in terms of sizeA and sizeB
 And this is also just like Example 2
 The outer loop runs sizeA times
 For EACH of those times,

 The inner loop runs sizeB times
 So this algorithm runs sizeA*sizeB times
 We approximate the running time as O(sizeA*sizeB)

More Algorithm Analysis page 33

More Algorithm Analysis

 Example 8:
 Determine the Big O running time of the following

code fragment:

int func8(int A[], int sizeA, int B[], int sizeB) {
int i, j;
for (i = 0; i < sizeA; i++) {

if (binSearch(B, sizeB, A[i]))
return 1;

}
return 0;

}

More Algorithm Analysis page 34

More Algorithm Analysis

 Example 8:
 So look at what’s going on in the code:

 Note: we see that we are calling the function binSearch
 As discussed previously, a single binary search runs in

O(log n) time
 where n represents the number of items within which you are

searching

 Examining the for loop:
 The for loop will execute sizeA times
 For EACH iteration of this loop

 a binary search will be run
 We approximate the running time as O(sizeA*log(sizeB))

More Algorithm Analysis page 35

More Algorithm Analysis

WASN’T
THAT

SWEET!

More Algorithm Analysis page 36

Daily Demotivator

Computer Science Department
University of Central Florida

More Algorithm
Analysis

COP 3502 – Computer Science I

	More Algorithm Analysis
	Announcements
	Announcements
	Announcements
	Big-O Notation
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	Brief Interlude: Human Stupidity
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	More Algorithm Analysis
	Daily Demotivator
	More Algorithm Analysis

