

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Announcements

Cheating:

ProGurl2, SpudMonkey, vette9890, sauve81, nesyou5, rpaul, srabbis (and others)

Guess what:

- We now have code "snippets" from the "developers"
- And what did that result in:
 - We have TWO students that have been identified.
 - SNAP!
- And we're still working to get the others students/cheaters identified
- Cheaters have NOT been informed they were caught
- Why?

Announcements

Cheating:

ProGurl2, SpudMonkey, Vette9890, sauve81, nesyou5, rpaul, srabbis (and others)

FINAL CHANCE:

- Turn yourself in and get a zero for the assignment
 - and NOTHING MORE
- Call the following scare tactics, I don't care:
 - If you do NOT turn yourself in, you take the chance that you are from those we already identified
 - Is it with a roll of the dice? A 50/50 chance?
 - Again, if you do NOT turn yourself in, and we identify you, then you will get a ZERO for the course and it goes on your permanent UCF record

Outline

Recursion

- Simple warm up example (Factorial n)
- Recurrence Relations
 - Factorial N
 - Power N

Recursion

What is Recursion?

- Powerful, problem-solving strategy
- Solves large problems by reducing them to smaller problems of the <u>same form</u>
- Example: Compute Factorial of a Number
 4! = 4 * 3 * 2 * 1 = 24
 n! = n * (n-1) * (n-2) * ... * 2 * 1
 Also, 0! = 1
 (just accept it!)

Recursion

Example: Compute Factorial of a Number

- Recursive Solution
 - Note that each factorial is related to a factorial of the next smaller integer

$$4! = 4 * (4-1)! = 4 * (3!)$$

- But we need something else
 - We need a stopping case, or this will just go on and on and on
 - NOT good!
- We let 0! = 1
- So in "math terms", we say
 - n! = 1 if n = 0
 - n! = n * (n-1)! if n > 0

Recursion

Example: Compute Factorial of a Number Recursive Solution --- in C code int fact (int n) And notice how this function is very clean if (n = 0)and basically follows the return 1; mathematical definition of factorial. else return (n * fact(n-1)); } This is recursive. Why? It defines the factorial of n in terms of the factorial of (n-1), thus reducing the problem

- Today we go over Recurrence Relations
 - The Question: What is a recurrence relation?
 - an <u>equation</u> that defines a sequence recursively
 - each term of the sequence is defined as a function of the preceding term
 - What is the purpose?
 - In response, let us ask, what is the purpose using <u>Summations</u> in <u>Big-O</u> analysis?
 - Answer:
 - Summations are a tool to assist in measuring the running time of <u>iterative</u> algorithms

- Today we go over Recurrence Relations
 - What is the purpose?
 - But can we use this same method of analysis, along with summations, to decipher the running time of recursive algorithms?
 - You cannot!
 - You cannot simply "eyeball" a recursive function for a minute or two, in the way you can an iterative function, and come up with a Big-O. Just doesn't work.
 - So just like summations are a tool to help find the Big-O of <u>iterative</u> algorithms
 - Recurrence Relations are a tool to help find the Big-O of <u>recursive</u> algorithms


```
Back to Factorial N...
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- The GOAL:
 - We want to come up with an <u>equation</u> that properly expresses this fact function in a <u>recursive manner</u>.
 - Then we will need to <u>solve</u> this newly found equation.
 - We do so by putting it into its "closed form".
 - Here's the process...


```
Back to Factorial N...
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- What is happening in this problem?
 - At every step of the recursion,
 - meaning, each time the function is recursively called,
 - What happens?
 - We see that the input size (n) reduces by 1
 - So if n was 100, it is reduced to 99 when the function is called recursively for the first time.

Recurrence Relations	page 11


```
Back to Factorial N...
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- What is happening in this problem?
 - Also, at every step of the recursion,
 - TWO mathematical operations are performed
 - The '*' and the '-' in return (n * fact(n-1));
 - So now we want to write an equation expressing these two facts.


```
Back to Factorial N...
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- What is happening in this problem?
 - We can say the following:
 - The total number of operations needed to execute this fact function for any given input, n, can be expressed as
 - 1) the sum of the 2 operations (the '*' and the '-')
 - 2) plus the number of operations needed to execute the function for n-1


```
Back to Factorial N...
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- In techno talk:
 - T(n) represents the # of operations of this function
 - T(n) can be expressed as a sum of:
 - T(n-1)
 - and the two arithmetic operations


```
Back to Factorial N...
     int fact (int n)
          if (n = 0)
               return 1;
          else
               return (n * fact(n-1));
     }
 In techno talk:
     T(n) can be expressed as a sum of:
         T(n-1)
         and the two arithmetic operations
       T(n) = T(n-1) + 2
       T(0) = 1 Meaning, we it takes constant time to simply return.
```



```
Back to Factorial N...
int fact (int n)
{
    if (n = 0)
        return 1;
    else
        return (n * fact(n-1));
}
```

- So what did we just do?
 - We came up with an equation that properly expresses this fact function in a recursive manner.

$$T(n) = T(n-1) + 2$$

 $T(0) = 1$

This equation is our Recurrence Relation

- Back to Factorial N...
 - From this recurrence relation, T(n), we can come up with a Big-O
 - Great, so we solved it, so let's move on!
 - Not so fast.
 - As it is, the recurrence relation,
 - T(n) = T(n-1) + 2
 - T(1) = 1
 - doesn't tell us about the # of operations of T(n)
 - Does anyone know how many operations are in T(n-1)?
 - Is it 487 operations? Perhaps 515,243 operations?
 - We DON'T know!

Back to Factorial N...

- The problem is only "<u>solved</u>" once we <u>remove</u> <u>all T(...)'s from the right side of the equation</u>
- Again, here's the equation:

T(n) = T(n-1) + 2

- So T(n-1) needs to go bye-bye
- Then the problem is in its "closed form" and is solved.
- So how do we make this happen?
- BUCKLE UP and HOLD ON.

Back to Factorial N

- We need to solve T(n) in terms of n
- For the recurrence relation,

■ T(n) = T(n-1) +2

- Do we know what T(n-1) equals?
 - Does it equal 8,572 operations?
- Who knows? We surely don't know!
- So we want to REDUCE the right side
 - specifically, the T(n-1)
- UNTIL we get to that which we do know!

Back to Factorial N

- We need to solve T(n) in terms of n
- Starting from this equation:

T(n) = T(n-1) + 2

- We reduce the right side until we get to T(1).
- Why?
 - CUZ we know T(1).
 - What is T(1)?
 - It is 1! ...this was from our Recurrence Relation earlier.
 - So then we can put 1 in the place of T(1)
 - Effectively eliminating all T(...)s from the right side of eqn!

Back to Factorial N

- We need to solve T(n) in terms of n T(n) = T(n-1) + 2
- We reduce the right side until we get to T(1).
- Here's the idea:

T(n-3)	we have	T(100-3)	
T(n-2)	that $n = 100$,	T(100-2)	
T(n-1)	if we assume	T(100-1)	

T(n-something) = T(1)

T(100-99) = T(1)

Recurrence	Relations
------------	-----------

Back to Factorial N

- We need to solve T(n) in terms of n
 T(n) = T(n-1) + 2
- We reduce the right side until we get to T(1).
- So, we do this in steps
- We <u>replace n with n-1</u> on both sides of the equation
- 2) We plug the result back in
- 3) And then we do it again

and again and again and again...

till a "light goes off" and we see something

Or you're like this guy, whose lights never turned on.

Back to Factorial N

T(n) = T(n-1) + 2 ----- call this Eq. 1

Replace n with n-1

DON'T overcomplicate this step.

It is REALLY this SIMPLE.

Wherever you see an n in Eq. 1, simply replace with n-1.

So if you have T(n-1) and you replace that n with an n-1, you will get T((n-1)-1), which equates to T(n-2).

Simple right?

Right.

G

Recurrence Relations

Back to Factorial N

- T(n) = T(n-1) + 2 ----- call this Eq. 1
 - Replace n with n-1
 - T(n-1) = T(n-2) + 2 ----- call this Eq. 2
- Now substitute the result of Eq. 2 into Eq. 1
 - T(n) = T(n-2) + 2 + 2 Wait? How'd we get this?

T(n) = T(n-1) + 2 ----- Eq. 1

And from Eq. 2, we also have, T(n-1) = T(n-2) + 2

So we simply plug in the result (the right side) of the Eq. 2 into Eq. 1 where we see T(n-1)

T(n) = T(n-1) + 2

T(n) = (T(n-2) + 2) + 2 removing parantheses, we get

T(n) = T(n-2) + 2 + 2

Recurrence Relations

- T(n) = T(n-1) + 2 ----- call this Eq. 1
 - Replace n with n-1
 - T(n-1) = T(n-2) + 2 ----- call this Eq. 2
- Now substitute the result of Eq. 2 into Eq. 1
 - T(n) = T(n-2) + 2 + 2
 - We can look at 2 + 2 as 2*2you'll see why we do this shortly
 - T(n) = T(n-2) + 2* 2 ----- call this Eq. 3
- So what did we do:
 - We made ANOTHER equation for T(n)
 - But this one is in terms of T(n-2)
 - REDUCED from being in terms of T(n-1)

- So we now have this new equation for T(n):
 T(n) = T(n-2) + 2*2
- Are we done?
 - NO! Cuz we still have T(...)s on the right
- And do we know how many operations are performed by T(n-2)?
 - Perhaps 5,219 operations? We don't know!
- So we now need to REDUCE this equation further
- We have T(n) in terms of T(n-2)
- We want to get T(n) in terms of T(n-3)

Recurrence Relations

- So we now need to REDUCE this equation further
- We want to get T(n) in terms of T(n-3)
- How are we going to do this?
 - We currently have $T(n) = T(n-2) + 2^2$
 - We want to develop an equation with T(n-2) on the <u>left</u>
 - and in terms of T(n-3)
- So, in Eq. 2, once again, replace n with n-1
 - T(n-1) = T(n-2) + 2 ----- Eq. 2
 - Replace n with n-1
 - T(n-2) = T(n-3) + 2 ----- call this Eq. 4
- Ah! So we now have our "T(n-2)" equation

Recurrence Relations

- Now substitute the result of Eq. 4 into Eq. 3
 - T(n-2) = T(n-3) + 2 ----- Eq. 4
 - T(n) = T(n-2) + 2* 2 ----- Eq. 3

$$T(n) = T(n-3) + 2 + 2^{*}2$$

- 2 + 2*2 really is 2*3 ...again, you'll see why we do this in a bit
 T(n) = T(n-3) + 2*3
- Again, what did we accomplish?
 - We made ANOTHER equation for T(n)
 - But this one is in terms of T(n-3)
 - REDUCED from being in terms of T(n-2)

Recurrence Relations

- Thus far, we have three equations with T(n) on the left side
 - T(n) = T(n-1) + 2*1
 - Note that I added the *1 next to the 2
 - This doesn't change anything right?
 - 2*1 is the same as just plain 'ole 2
 - You'll see why we did this in a second.
 - $T(n) = T(n-2) + 2^{2}$
 - T(n) = T(n-3) + 2*3

Recurrence Relations

- Is there a pattern developing? Perhaps some "light" going off?
 - 1st step of recursion, we have: $T(n) = T(n-1) + 2^{*1}$
 - 2^{nd} step of recursion, we have: $T(n) = T(n-2) + 2^{2}$
 - 3^{rd} step of recursion, we have: $T(n) = T(n-3) + 2^*3$
- If we followed the process one more time, we get
 - T(n) = T(n-4) + 2*4 ... for the 4th step of the recursion
- So on the <u>kth step/stage of the recursion</u>, we get a <u>generalized recurrence relation</u>:
 - $T(n) = T(n-k) + 2^{k}k$

- So on the <u>kth step/stage of the recursion</u>, we get a <u>generalized recurrence relation</u>:
 - T(n) = T(n-k) + 2*k
- WHEW!
 - That was a lot!
 - But we're finally done! Right.?.
 - WRONG!!! Why aren't we done yet?
 - CUZ we still have T(...)s on the right side of the equation
- So now we need to actually solve this generalized recurrence relation

- Back to Factorial N
 - We need to solve this generalized rec. relation
 - T(n) = T(n-k) + 2*k
 - How?
 - Remember we said we wanted to reduce the right side of the equation to T(1)
 - Again, why?
 - Because we know what T(1) equals...it equals 1!
 - So we have T(n-k) and we want T(1)
 - Simple! Let n k = 1
 - Solve for k leaving k = n 1
 - Plug back into equation

- We need to solve this generalized rec. relation
 - T(n) = T(n-k) + 2*k
 - k = n − 1
 - Plug into above equation
 - T(n) = T(n-(n-1)) + 2(n-1) = T(1) + 2(n-1)
 - And we know that T(1) = 1
 - Therefore....
 - T(n) = 2(n-1) + 1 = 2n 1
 - And we are done!
- Right side does not have any T(...)'s
- This rec. relation is now solved!
- This algorithm runs in LINEAR time.

Brief Interlude: Human Stupidity

Let's look at a function that calculates powers

```
int power (int x, int n) { // calculates the value of x^n
    if (n == 0)
        return 1;
    if (n == 1)
        return x;
    if (n is even)
        return power(x*x, n/2);
    else // if n is odd
        return power(x*x, n/2)*x;
}
```

- What's going on in this problem?
 - At every step, the problem size is reduced by <u>half</u>
 - If n is even, 2 arithmetic operations are computed
 - If n is odd, 3 arithmetic operations are computed

G

Recurrence Relations

Power Function

- What's going on in this problem?
 - At every step, the problem size is reduced by <u>half</u>
 - If n is even, 2 arithmetic operations are computed
 - If n is odd, 3 arithmetic operations are computed
- When computing time complexity, <u>we assume</u> <u>the worst case</u>
 - We <u>assume n is odd</u> at each step
 - So 3 operations are assumed to be always needed
- Thus, T(n) can be expressed as the sum of T(n/2) and the 3 operations needed at each step T(n) = T(n/2) + 3 T(1) = 1

- Power Function
 - So here's our recurrence relation:
 - T(n) = T(n/2) + 3
 - T(1) = 1
 - We need to solve this by removing all T(...)'s from the right side.
 - T(n/2) needs to hit the road
 - Then the problem is in its "closed form" and is solved.

Power Function

- We need to solve T(n) in terms of n
- Starting from this equation
 - T(n) = T(n/2) + 3

We reduce the right side until we get to T(1).

Why?

T(1) is known to us (it equals 1)

- We do this in steps
 - We replace n with <u>n/2</u> on both sides of the equation
 - We plug the result back in
 - And then we do it again...till a "light goes off" and we see something

Power Function

- This time we'll do a slightly different order of things...just so you see two different ways
 - Start with the base recurrence relation
 - T(n) = T(n/2) + 3 ----- call this Eq. 1
 - Replace n with n/2, and go ahead and do this several times
 - T(n/2) = T(n/4) + 3 ----- call this Eq. 2
 - T(n/4) = T(n/8) + 3 ----- call this Eq. 3
 - T(n/8) = T(n/16) + 3 ----- call this Eq. 4
- Now we substitute each one of these back into Eq.1 and hopefully see a pattern

Recurrence Relations

Power Function

- Here's the four current equations we have:
 - T(n) = T(n/2) + 3 ----- Eq. 1
 - T(n/2) = T(n/4) + 3 ----- Eq. 2
 - T(n/4) = T(n/8) + 3 ----- Eq. 3
 - T(n/8) = T(n/16) + 3 ----- Eq. 4
- Now substitute the result of Eq. 2 into Eq. 1

•
$$T(n) = T(n/4) + 3 + 3$$

We can look at 3 + 3 as 3*2you remember why...right.?.

Power Function

- Here's the four current equations we have:
 - T(n) = T(n/2) + 3 ----- Eq. 1
 - T(n/2) = T(n/4) + 3 ----- Eq. 2
 - T(n/4) = T(n/8) + 3 ----- Eq. 3
 - T(n/8) = T(n/16) + 3 ---- Eq. 4
- Now substitute the result of Eq. 3 into Eq. 5
 - $T(n) = T(n/8) + 3 + 3^{*}2$
 - T(n) = T(n/8) + 3*3 ----- call this Eq. 6
- One more substitution of Eq. 4 into Eq. 6:
 - T(n) = T(n/16) + 3*4 ----- call this Eq. 7

Power Function

- Now show all the equations we developed with T(n) on the left...is there a pattern developing?
 - T(n) = T(n/2) + 3*1
 - $T(n) = T(n/4) + 3^{*}2$
 - $T(n) = T(n/8) + 3*3 = T(n/2^3) + 3*3$
- $= T(n/2^{2}) + 3^{*}2$ $= T(n/2^{3}) + 3^{*}3$

 $= T(n/2^{1}) + 3^{*}1$

- $T(n) = T(n/16) + 3*4 = T(n/2^4) + 3*4$
- So on the kth step/stage of the recursion, we get a generalized recurrence relation:

 $T(n) = T(n/2^k) + 3^k k$

- We're not done yet right.
- Cuz we need to get rid of the T(n/2^k)

Power Function

- We need to solve this generalized rec. relation
 T(n) = T(n/2^k) + 3^{*}k
- How?
 - Remember we said we wanted to reduce the right side of the equation to T(1)
 - Again, why?
 - Because we know what T(1) equals...it equals 1!
 - So we have T(n/2^k) and we want T(1)
 - Simple! Let n = 2^k
 - Solve for k
 - Take log base 2 of both sides
 - k = log n

Plug back into equation

Power Function

- We need to solve this generalized rec. relation
 - $T(n) = T(n/2^k) + 3^k k$
 - So n = 2^k and k = log n
 - Plug into above equation

T(n) =
$$T(1) + 3(\log n)$$

- And we know that T(1) = 1
- Therefore....
- T(n) = 1 + 3log(n)
- And we are done! This algorithm runs in logarithmic time.
- Right side does not have any T(...)'s
- This rec. relation is now solved!

WASN'T THAT (Let's admit it: that sucked!)

Daily Demotivator

CURIOSITY

SOME PLACES REMAIN UNKNOWN BECAUSE NO ONE HAS VENTURED FORTH. OTHERS REMAIN SO BECAUSE NO ONE HAS EVER COME BACK.

Computer Science Department University of Central Florida

COP 3502 – Computer Science I