
Computer Science Department
University of Central Florida

Recurrence
Relations

COP 3502 – Computer Science I

Recurrence Relations page 2

Announcements

 Cheating:
 ProGurl2, SpudMonkey, vette9890, sauve81,

nesyou5, rpaul, srabbis (and others)
 Guess what:

 We now have code “snippets” from the “developers”
 And what did that result in:

 We have TWO students that have been identified.
 SNAP!

 And we’re still working to get the others
students/cheaters identified

 Cheaters have NOT been informed they were caught
 Why?

Recurrence Relations page 3

Announcements

 Cheating:
 ProGurl2, SpudMonkey, Vette9890, sauve81,

nesyou5, rpaul, srabbis (and others)
 FINAL CHANCE:

 Turn yourself in and get a zero for the assignment
 and NOTHING MORE

 Call the following scare tactics, I don’t care:
 If you do NOT turn yourself in, you take the chance that you

are from those we already identified
 Is it with a roll of the dice? A 50/50 chance?
 Again, if you do NOT turn yourself in, and we identify you,

then you will get a ZERO for the course and it goes on your
permanent UCF record

Recurrence Relations page 4

Outline

 Recursion
 Simple warm up example (Factorial n)

 Recurrence Relations
 Factorial N
 Power N

Recurrence Relations page 5

Recursion

 What is Recursion?
 Powerful, problem-solving strategy
 Solves large problems by reducing them to

smaller problems of the same form

 Example: Compute Factorial of a Number
 4! = 4 * 3 * 2 * 1 = 24

 n! = n * (n-1) * (n-2) * … * 2 * 1
 Also, 0! = 1

 (just accept it!)

Recurrence Relations page 6

Recursion

 Example: Compute Factorial of a Number
 Recursive Solution

 Note that each factorial is related to a factorial of the next
smaller integer

 n! = n * (n-1)!
 4! = 4 * (4-1)! = 4 * (3!)
 But we need something else

 We need a stopping case, or this will just go on and on and on
 NOT good!

 We let 0! = 1
 So in “math terms”, we say

 n! = 1 if n = 0
 n! = n * (n-1)! if n > 0

Recurrence Relations page 7

Recursion

 Example: Compute Factorial of a Number
 Recursive Solution --- in C code

int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 This is recursive. Why?
 It defines the factorial of n in terms of the factorial of

(n-1), thus reducing the problem

And notice how this
function is very clean
and basically follows the
mathematical definition
of factorial.

Recurrence Relations page 8

Recurrence Relations

 Today we go over Recurrence Relations
 The Question: What is a recurrence relation?

 an equation that defines a sequence recursively
 each term of the sequence is defined as a function of the

preceding term

 What is the purpose?
 In response, let us ask, what is the purpose using

Summations in Big-O analysis?
 Answer:

 Summations are a tool to assist in measuring the running time
of iterative algorithms

Recurrence Relations page 9

Recurrence Relations

 Today we go over Recurrence Relations
 What is the purpose?

 But can we use this same method of analysis, along
with summations, to decipher the running time of
recursive algorithms?

 You cannot!
 You cannot simply “eyeball” a recursive function for a minute

or two, in the way you can an iterative function, and come up
with a Big-O. Just doesn’t work.

 So just like summations are a tool to help find the Big-O
of iterative algorithms

 Recurrence Relations are a tool to help find the
Big-O of recursive algorithms

Recurrence Relations page 10

Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 The GOAL:
 We want to come up with an equation that properly

expresses this fact function in a recursive manner.
 Then we will need to solve this newly found equation.

 We do so by putting it into its “closed form”.
 Here’s the process…

Recurrence Relations page 11

Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 What is happening in this problem?
 At every step of the recursion,

 meaning, each time the function is recursively called,
 What happens?

 We see that the input size (n) reduces by 1
 So if n was 100, it is reduced to 99 when the function is called

recursively for the first time.

Recurrence Relations page 12

Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 What is happening in this problem?
 Also, at every step of the recursion,

 TWO mathematical operations are performed
 The ‘*’ and the ‘-’ in return (n * fact(n-1));

 So now we want to write an equation expressing these
two facts.

Recurrence Relations page 13

Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 What is happening in this problem?
 We can say the following:

 The total number of operations needed to execute this fact
function for any given input, n, can be expressed as

1) the sum of the 2 operations (the ‘*’ and the ‘-’)
2) plus the number of operations needed to execute the

function for n-1

Recurrence Relations page 14

Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 In techno talk:
 T(n) represents the # of operations of this function
 T(n) can be expressed as a sum of:
 T(n-1)
 and the two arithmetic operations

Recurrence Relations page 15

Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 In techno talk:
 T(n) can be expressed as a sum of:
 T(n-1)
 and the two arithmetic operations

T(n) = T(n-1) + 2
T(0) = 1 Meaning, we it takes constant time to simply return.

Recurrence Relations page 16

Recurrence Relations

 Back to Factorial N…
int fact (int n)
{

if (n = 0)
return 1;

else
return (n * fact(n-1));

}

 So what did we just do?
 We came up with an equation that properly expresses

this fact function in a recursive manner.
T(n) = T(n-1) + 2
T(0) = 1

 This equation is our Recurrence Relation

Recurrence Relations page 17

Recurrence Relations

 Back to Factorial N…
 From this recurrence relation, T(n), we can come

up with a Big-O
 Great, so we solved it, so let’s move on!
 Not so fast.

 As it is, the recurrence relation,
T(n) = T(n-1) + 2
T(1) = 1

 doesn’t tell us about the # of operations of T(n)
 Does anyone know how many operations are in T(n-1)?
 Is it 487 operations?
 We DON’T know!

Perhaps 515,243 operations?

Recurrence Relations page 18

Recurrence Relations

 Back to Factorial N…
 The problem is only “solved” once we remove

all T(…)’s from the right side of the equation
 Again, here’s the equation:

T(n) = T(n-1) + 2
 So T(n-1) needs to go bye-bye
 Then the problem is in its “closed form” and is

solved.
 So how do we make this happen?

 BUCKLE UP and HOLD ON.

Recurrence Relations page 19

Recurrence Relations

 Back to Factorial N
 We need to solve T(n) in terms of n
 For the recurrence relation,

 T(n) = T(n-1) +2
 Do we know what T(n-1) equals?

 Does it equal 8,572 operations?

 Who knows? We surely don’t know!
 So we want to REDUCE the right side

 specifically, the T(n-1)

 UNTIL we get to that which we do know!

Recurrence Relations page 20

Recurrence Relations

 Back to Factorial N
 We need to solve T(n) in terms of n
 Starting from this equation:

T(n) = T(n-1) + 2
 We reduce the right side until we get to T(1).
 Why?

 CUZ we know T(1).
 What is T(1)?

 It is 1! …this was from our Recurrence Relation earlier.
 So then we can put 1 in the place of T(1)

 Effectively eliminating all T(…)s from the right side of eqn!

Recurrence Relations page 21

Recurrence Relations

 Back to Factorial N
 We need to solve T(n) in terms of n

T(n) = T(n-1) + 2
 We reduce the right side until we get to T(1).
 Here’s the idea:

T(n-1)

T(n-2)

T(n-3)

…

T(n-something) = T(1)

T(100-1)

T(100-2)

T(100-3)

…

T(100-99) = T(1)

if we assume
that n = 100,
we have…

Recurrence Relations page 22

Recurrence Relations

 Back to Factorial N
 We need to solve T(n) in terms of n

T(n) = T(n-1) + 2
 We reduce the right side until we get to T(1).
 So, we do this in steps
1) We replace n with n-1 on both sides of the

equation
2) We plug the result back in
3) And then we do it again

and again and again and again…
till a “light goes off” and we see something

Recurrence Relations page 23

Recurrence Relations

Or you’re
like this guy,
whose lights
never
turned on.

Recurrence Relations page 24

Recurrence Relations

 Back to Factorial N
 T(n) = T(n-1) + 2 ----- call this Eq. 1

 Replace n with n-1

DON’T overcomplicate this step.

It is REALLY this SIMPLE.

Wherever you see an n in Eq. 1, simply replace with n-1.

So if you have T(n-1) and you replace that n with an n-1,
you will get T((n-1)-1), which equates to T(n-2).

Simple right?

Right.

Recurrence Relations page 25

Recurrence Relations

 Back to Factorial N
 T(n) = T(n-1) + 2 ----- call this Eq. 1

 Replace n with n-1
 T(n-1) = T(n-2) + 2 ----- call this Eq. 2

 Now substitute the result of Eq. 2 into Eq. 1
 T(n) = T(n-2) + 2 + 2

Wait? How’d we get this?

T(n) = T(n-1) + 2 ----- Eq. 1

And from Eq. 2, we also have, T(n-1) = T(n-2) + 2

So we simply plug in the result (the right side) of the Eq. 2 into Eq. 1 where we
see T(n-1)

T(n) = T(n-1) + 2

T(n) = (T(n-2) + 2) + 2 removing parantheses, we get

T(n) = T(n-2) + 2 + 2

Recurrence Relations page 26

Recurrence Relations

 Back to Factorial N
 T(n) = T(n-1) + 2 ----- call this Eq. 1

 Replace n with n-1
 T(n-1) = T(n-2) + 2 ----- call this Eq. 2

 Now substitute the result of Eq. 2 into Eq. 1
 T(n) = T(n-2) + 2 + 2

 We can look at 2 + 2 as 2*2 ….you’ll see why we do this
shortly

 T(n) = T(n-2) + 2* 2 ----- call this Eq. 3
 So what did we do:

 We made ANOTHER equation for T(n)
 But this one is in terms of T(n-2)
 REDUCED from being in terms of T(n-1)

Recurrence Relations page 27

Recurrence Relations

 Back to Factorial N
 So we now have this new equation for T(n):

 T(n) = T(n-2) + 2*2
 Are we done?

 NO! Cuz we still have T(…)s on the right
 And do we know how many operations are

performed by T(n-2)?
 Perhaps 5,219 operations? We don’t know!

 So we now need to REDUCE this equation further
 We have T(n) in terms of T(n-2)
 We want to get T(n) in terms of T(n-3)

Recurrence Relations page 28

Recurrence Relations

 Back to Factorial N
 So we now need to REDUCE this equation further
 We want to get T(n) in terms of T(n-3)
 How are we going to do this?

 We currently have T(n) = T(n-2) + 2*2
 We want to develop an equation with T(n-2) on the left
 and in terms of T(n-3)

 So, in Eq. 2, once again, replace n with n-1
 T(n-1) = T(n-2) + 2 ----- Eq. 2
 Replace n with n-1
 T(n-2) = T(n-3) + 2 ----- call this Eq. 4

 Ah! So we now have our “T(n-2)” equation

Recurrence Relations page 29

Recurrence Relations

 Back to Factorial N
 Now substitute the result of Eq. 4 into Eq. 3

 T(n-2) = T(n-3) + 2 ----- Eq. 4
 T(n) = T(n-2) + 2* 2 ----- Eq. 3
 T(n) = T(n-3) + 2 + 2*2

 2 + 2*2 really is 2*3
 T(n) = T(n-3) + 2*3

 Again, what did we accomplish?
 We made ANOTHER equation for T(n)
 But this one is in terms of T(n-3)
 REDUCED from being in terms of T(n-2)

…again, you’ll see why we do this in a bit

Recurrence Relations page 30

Recurrence Relations

 Back to Factorial N
 Thus far, we have three equations with T(n) on

the left side
 T(n) = T(n-1) + 2*1

 Note that I added the *1 next to the 2
 This doesn’t change anything right?
 2*1 is the same as just plain ‘ole 2
 You’ll see why we did this in a second.

 T(n) = T(n-2) + 2*2
 T(n) = T(n-3) + 2*3

Recurrence Relations page 31

Recurrence Relations

 Back to Factorial N
 Is there a pattern developing? Perhaps some

“light” going off?
 1st step of recursion, we have: T(n) = T(n-1) + 2*1
 2nd step of recursion, we have: T(n) = T(n-2) + 2*2
 3rd step of recursion, we have: T(n) = T(n-3) + 2*3

 If we followed the process one more time, we get
 T(n) = T(n-4) + 2*4

 So on the kth step/stage of the recursion, we
get a generalized recurrence relation:
 T(n) = T(n-k) + 2*k

…for the 4th step of the recursion

Recurrence Relations page 32

Recurrence Relations

 Back to Factorial N
 So on the kth step/stage of the recursion, we

get a generalized recurrence relation:
 T(n) = T(n-k) + 2*k

 WHEW!
 That was a lot!
 But we’re finally done!
 WRONG!!! Why aren’t we done yet?
 CUZ we still have T(…)s on the right side of the equation

 So now we need to actually solve this generalized
recurrence relation

Right.?.

Recurrence Relations page 33

Recurrence Relations

 Back to Factorial N
 We need to solve this generalized rec. relation

 T(n) = T(n-k) + 2*k

 How?
 Remember we said we wanted to reduce the right side

of the equation to T(1)
 Again, why?

 Because we know what T(1) equals…it equals 1!
 So we have T(n-k) and we want T(1)
 Simple! Let n - k = 1
 Solve for k leaving k = n – 1
 Plug back into equation

Recurrence Relations page 34

Recurrence Relations

 Back to Factorial N
 We need to solve this generalized rec. relation

 T(n) = T(n-k) + 2*k
 k = n – 1

 Plug into above equation
 T(n) = T(n-(n-1)) + 2(n-1)

 And we know that T(1) = 1
 Therefore….
 T(n) = 2(n-1) + 1
 And we are done!

 Right side does not have any T(…)’s
 This rec. relation is now solved!
 This algorithm runs in LINEAR time.

= 2n – 1

= T(1) + 2(n-1)

Recurrence Relations page 35

Brief Interlude: Human Stupidity

Recurrence Relations page 36

Recurrence Relations

 Let’s look at a function that calculates powers
int power (int x, int n) { // calculates the value of x^n

if (n == 0)

return 1;

if (n == 1)

return x;

if (n is even)

return power(x*x, n/2);

else // if n is odd

return power(x*x, n/2)*x;

}

 What’s going on in this problem?
 At every step, the problem size is reduced by half
 If n is even, 2 arithmetic operations are computed
 If n is odd, 3 arithmetic operations are computed

Recurrence Relations page 37

Recurrence Relations

 Power Function
 What’s going on in this problem?

 At every step, the problem size is reduced by half
 If n is even, 2 arithmetic operations are computed
 If n is odd, 3 arithmetic operations are computed

 When computing time complexity, we assume
the worst case
 We assume n is odd at each step

 So 3 operations are assumed to be always needed

 Thus, T(n) can be expressed as the sum of
T(n/2) and the 3 operations needed at each step
T(n) = T(n/2) + 3
T(1) = 1

Recurrence Relations page 38

Recurrence Relations

 Power Function
 So here’s our recurrence relation:

T(n) = T(n/2) + 3
T(1) = 1

 We need to solve this by removing all T(…)’s
from the right side.
 T(n/2) needs to hit the road

 Then the problem is in its “closed form”
and is solved.

Recurrence Relations page 39

Recurrence Relations

 Power Function
 We need to solve T(n) in terms of n
 Starting from this equation

T(n) = T(n/2) + 3
We reduce the right side until we get to T(1).

 Why?
 T(1) is known to us (it equals 1)

 We do this in steps
 We replace n with n/2 on both sides of the equation
 We plug the result back in
 And then we do it again…till a “light goes off” and we

see something

Recurrence Relations page 40

Recurrence Relations

 Power Function
 This time we’ll do a slightly different order of

things…just so you see two different ways
 Start with the base recurrence relation
 T(n) = T(n/2) + 3 ----- call this Eq. 1
 Replace n with n/2, and go ahead and do this several

times
 T(n/2) = T(n/4) + 3 ----- call this Eq. 2
 T(n/4) = T(n/8) + 3 ----- call this Eq. 3
 T(n/8) = T(n/16) + 3 ----- call this Eq. 4

 Now we substitute each one of these back into
Eq.1 and hopefully see a pattern

Recurrence Relations page 41

Recurrence Relations

 Power Function
 Here’s the four current equations we have:

 T(n) = T(n/2) + 3 ----- Eq. 1
 T(n/2) = T(n/4) + 3 ----- Eq. 2
 T(n/4) = T(n/8) + 3 ----- Eq. 3
 T(n/8) = T(n/16) + 3 ----- Eq. 4

 Now substitute the result of Eq. 2 into Eq. 1
 T(n) = T(n/4) + 3 + 3

 We can look at 3 + 3 as 3*2 ….you remember
why…right.?.

 T(n) = T(n/4) + 3*2 ----- call this Eq. 5

Recurrence Relations page 42

Recurrence Relations

 Power Function
 Here’s the four current equations we have:

 T(n) = T(n/2) + 3 ----- Eq. 1
 T(n/2) = T(n/4) + 3 ----- Eq. 2
 T(n/4) = T(n/8) + 3 ----- Eq. 3
 T(n/8) = T(n/16) + 3 ----- Eq. 4

 Now substitute the result of Eq. 3 into Eq. 5
 T(n) = T(n/8) + 3 + 3*2
 T(n) = T(n/8) + 3*3 ----- call this Eq. 6

 One more substitution of Eq. 4 into Eq. 6:
 T(n) = T(n/16) + 3*4 ----- call this Eq. 7

Recurrence Relations page 43

Recurrence Relations

 Power Function
 Now show all the equations we developed with

T(n) on the left…is there a pattern developing?
 T(n) = T(n/2) + 3*1
 T(n) = T(n/4) + 3*2
 T(n) = T(n/8) + 3*3
 T(n) = T(n/16) + 3*4

 So on the kth step/stage of the recursion, we get
a generalized recurrence relation:
 T(n) = T(n/2k) + 3*k

 We’re not done yet right.
 Cuz we need to get rid of the T(n/2k)

= T(n/21) + 3*1
= T(n/22) + 3*2
= T(n/23) + 3*3
= T(n/24) + 3*4

Recurrence Relations page 44

Recurrence Relations

 Power Function
 We need to solve this generalized rec. relation

 T(n) = T(n/2k) + 3*k
 How?

 Remember we said we wanted to reduce the right side
of the equation to T(1)

 Again, why?
 Because we know what T(1) equals…it equals 1!

 So we have T(n/2k) and we want T(1)
 Simple! Let n = 2k

 Solve for k
 Take log base 2 of both sides
 k = log n Plug back into equation

Recurrence Relations page 45

Recurrence Relations

 Power Function
 We need to solve this generalized rec. relation

 T(n) = T(n/2k) + 3*k
 So n = 2k and k = log n

 Plug into above equation
 T(n) = T(1) + 3(log n)

 And we know that T(1) = 1
 Therefore….
 T(n) = 1 + 3log(n)
 And we are done! This algorithm runs in logarithmic

time.
 Right side does not have any T(…)’s
 This rec. relation is now solved!

Recurrence Relations page 46

Recurrence Relations

WASN’T
THAT

(Let’s admit it:
that sucked!)

Recurrence Relations page 47

Daily Demotivator

Computer Science Department
University of Central Florida

Recurrence
Relations

COP 3502 – Computer Science I

	Recurrence Relations
	Announcements
	Announcements
	Outline
	Recursion
	Recursion
	Recursion
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Brief Interlude: Human Stupidity
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Recurrence Relations
	Daily Demotivator
	Recurrence Relations

