
Computer Science Department
University of Central Florida

Computer Science I
COP 3502 – Introduction

COP 3502 – Computer Science I

Computer Science I: An Introduction page 2

Computer Science 1: Introduction

 How is COP3502 different than COP 3223?
 COP 3223 teaches how to program in C

 Language basics, variable declarations, conditional
expressions, if statements, loops, functions, arrays,
structures, etc.

 This will not be covered in this class
 You will need to freshen up on your C very quickly

 If you need help, but a good C-language book or find a quality
reference online

 With respect to the C language, we will cover:
 Pointers, 2D arrays, and linked lists

Computer Science I: An Introduction page 3

Computer Science 1: Introduction

 The goals of Computer Science I:
 Improve knowledge of standard data structures

and abstract data types
 Improve knowledge of standard algorithms used

to solve several classical problems
 Cover some mathematical concepts that are

useful for the analysis of algorithms
 Analyze the efficiency of solutions to problems

Computer Science I: An Introduction page 4

Computer Science 1: Introduction

 The goals of Computer Science I:
 In COP 3223, we only cared if we found a

solution to the problem at hand
 Didn’t really pay attention to the efficiency of the

answer

 For this class:
 We learn standard ways to solve problems
 And how to analyze the efficiency of those solutions
 Finally, we simply expand upon our knowledge of our

use of the C programming language

Computer Science I: An Introduction page 5

Computer Science 1: Introduction

 Example Problem:
 We will now go over two solutions to a problem

 The first is a straightforward solution that a COP 3223
student should be able to come up with
 Doesn’t’ care about efficiency

 The second solution is one that a COP 3502 student
should be able to come up with after some thought
 Cares about efficiency

 Hopefully this example will illustrate part of the
goal of this course

Computer Science I: An Introduction page 6

Computer Science 1: Introduction

 Max Number of 1’s:
 You are given an nxn integer array

 Say, for example, a 100x100 sized array

 Each row is filled with several 1’s followed by all
0’s
 Example:

 Row 1 may have 38 1’s followed by 62 0’s
 Row 2 may have 73 1’s followed by 27 0’s
 You get the idea

 The goal of the problem is to identify the row
that has the maximum number of 1’s.

Computer Science I: An Introduction page 7

Computer Science 1: Introduction

 Max Number of 1’s:
 Straightforward COP 3223 style solution:

 Make a variable called MaxOnes and set equal
to 0

 For each row do the following:
 Start from the beginning of the row on the left side
 Scan left to right, counting the number of 1’s until the first zero

is encountered
 If the number of 1’s is greater than the value stored in

MaxOnes, update MaxOnes with the number of 1’s seen on
this row

 Clearly, this works
 But let’s see how long this algorithm will take

Computer Science I: An Introduction page 8

Computer Science 1: Introduction

 Max Number of 1’s:
 Analysis of Straightforward Solution:

 Basically we iterate through each square that contains
a 1, as well as the first 0 in each row

 If all cells were 0, we would only “visit” one cell per
row, resulting in n visited cells

 However, if all cells were 1’s, we would “visit” all of the
cells (n2 total)
 So in the worst case, the number of simple steps the

algorithm takes would be approximately n2

 This makes the running time of this algorithm O(n2)
 The meaning of this Big-O will be discussed later in the

semester

Computer Science I: An Introduction page 9

Computer Science 1: Introduction

 Max Number of 1’s:
 Analysis of Straightforward Solution:

 There seems to be extra work done here
 Once we know that a row has 12 1’s, for example, it

seems pointless to start checking at the beginning of
the next row
 Why not just start at column 12
 If it’s a 0, then that row can’t be the winner
 If it is a 1, then clearly there is no point in going back, on

that row, and checking the previous 11 squares

 This idea leads to a more efficient algorithm

Computer Science I: An Introduction page 10

Computer Science 1: Introduction

 Max Number of 1’s:
 More Efficient COP 3502 style algorithm:
1. Initialize the current row and current column to 0
2. While the current row is less than n (or before the

last row)
a. While the cell at the current row and column is 1

 Increment the current column

b. Increment the current row

3. The current column index represents the
maximum number of 1’s seen

4. Now let’s trace through a couple of examples

Computer Science I: An Introduction page 11

Computer Science 1: Introduction

 Max Number of 1’s:
 Example 1:

1 1 0 0 0 0

0 0 0 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 1 1 0

1 1 1 1 0 0

Computer Science I: An Introduction page 12

Computer Science 1: Introduction

 Max Number of 1’s:
 Example 2:

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1

Computer Science I: An Introduction page 13

Computer Science 1: Introduction

 Max Number of 1’s:
 Analysis of Better Solution:

 How many steps will this algorithm take, in terms of n?
 Each “step” taken by the algorithm either goes to the right

or down in the table.
 There are a maximum of n-1 steps to the right
 And a maximum of n-1 steps down that could be taken
 Thus the maximum number of “steps” that can be done

during this algorithm is approximately 2n
 And this is the worst case

 So the running time of this algorithm is O(n)
 An improvement of the previous algorithm
 Input size of 100 for n
 n2 would be 10,000 steps and 2n would be 200 steps

Computer Science I: An Introduction page 14

Computer Science 1: Introduction

 Implementing an Algorithm in C:
 In this class, you will have an opportunity to

improve upon your ability to write programs that
implement an algorithm you have learned

 You must know the syntax of C in order to
properly and effective do this

 There’s no set way to create code to implement
an algorithm
 But this example shows some steps you can take in

doing so

Computer Science I: An Introduction page 15

Computer Science 1: Introduction

 Implementing an Algorithm in C:
 Here are some issues to think about:

1. What data structures are going to be used?
2. What functions are going to be used?
3. What run-time errors should we protect

against?
4. What atypical cases may we have to deal with?
5. What is an efficient way to execute the steps in

the algorithm?

Computer Science I: An Introduction page 16

Computer Science 1: Introduction

 Maximum Number of 1’s
 This was a creative exercise

 Much of what you learn in class will not be

 We have many set algorithms and data
structures that you will study

 Occasionally you will have to come up with new
ideas like this one

 Mostly, however, you will simply have to apply
the data structures and algorithms shown in
class fairly directly to solve the given problems

Computer Science I: An Introduction page 17

CS1 - Introduction

Are
You

Excited?

Computer Science Department
University of Central Florida

Computer Science I
COP 3502 – Introduction

COP 3502 – Computer Science I

	Computer Science I�COP 3502 – Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	Computer Science 1: Introduction
	CS1 - Introduction
	Computer Science I�COP 3502 – Introduction

