
Computer Science Department
University of Central Florida

Binary Trees

COP 3502 – Computer Science I

Binary Trees page 2

Outline

 Tree Stuff
 Trees
 Binary Trees
 Implementation of a Binary Tree

 Tree Traversals – Depth First
 Preorder
 Inorder
 Postorder

 Breadth First Tree Traversal
 Binary Search Trees

Binary Trees page 3

Tree Stuff

 Trees:
 Another Abstract Data Type
 Data structure made of nodes and pointers

 Much like a linked list
 The difference between the two is how they are organized.

 A linked list represents a linear structure
 A predecessor/successor relationship between the nodes of

the list
 A tree represents a hierarchical or ancestral relationship

between the nodes
 A node in a tree can have several successors, which we refer

to as children

Binary Trees page 4

Tree Stuff

 Trees:
 General Tree Information:

 Top node in a tree is called the root
 the root node has no parent above it

 Every node in the tree can have “children” nodes
 Each child node can, in turn, be a parent to its children and

so on
 Nodes having no children are called leaves
 Any node that is not a root or a leaf is an interior

node
 The height of a tree is defined to be the length of the

longest path from the root to a leaf in that tree.
 A tree with only one node (the root) has a height of zero.

Binary Trees page 5

Tree Stuff

 Trees:
 Here’s a purty picture of a tree:

 2 is the root
 2, 5, 11, and 4 are leaves
 7, 5, 6, and 9 are interior

nodes

Binary Trees page 6

Tree Stuff

 Binary Trees:
 A tree in which each node can have a maximum of

two children
 Each node can have no child, one child, or two children
 And a child can only have one parent
 Pointers help us to identify if it is a right child or a left one

Examples of two
Binary Trees:

Binary Trees page 7

Tree Stuff

 Examples of trees that are NOT Binary Trees:

Binary Trees page 8

Tree Stuff

 More Binary Tree Goodies:
 A full binary tree:

 Every node, other than the leaves, has two children

a

b c

d e

g h

g, h, e, and c are
leaves: so they
have no children.

Binary Trees page 9

Tree Stuff

 More Binary Tree Goodies:
 A complete binary tree:

 Every level, except possibly the last, is completely
filled, and all nodes are as far left as possible.

Binary Trees page 10

Tree Stuff

 More Binary Tree Goodies:
 The root of the tree is at level 0
 The level of any other node in the tree is one

more than the level of its parent
 Total # of nodes (n) in a

complete binary tree:
 n = 2h+1 – 1 (maximum)

 Height (h) of the tree:
 h = log((n + 1)/2)
 If we have 15 nodes
 h = log(16/2) = log(8) = 3

Binary Trees page 11

Tree Stuff

 Implementation of a Binary Tree:
 A binary tree has a natural implementation using

linked storage
 Each node of a binary tree has both left and

right subtrees that can be reached with pointers:

struct tree_node {
int data;
struct tree_node *left_child;
struct tree_node *right_child;

}

left_child data right_child

Binary Trees page 12

Tree Traversals – Depth First

 Traversal of Binary Trees:
 We need a way of zipping through a tree for

searching, inserting, etc.
 But how can we do this?
 If you remember…

 Linked lists are traversed from the head to the last node,
sequentially

 Can’t we just “do that” for binary trees.?.
 NO! There is no such natural linear ordering for nodes of a tree.

 Turns out, there are THREE ways/orderings of
traversing a binary tree:
 Preorder, Inorder, and Postorder

Binary Trees page 13

Tree Traversals – Depth First

But before we get into the
nitty gritty of those three,
let’s describe..

Binary Trees page 14

Tree Traversals – Depth First

 A depth-first search (DFS)
explores a path all the way to
a leaf before backtracking and
exploring another path

 For example, after searching
A, then B, then D, the search
backtracks and tries another
path from B

 Node are explored in the order
A B D E H L M N I O P C F
G J K Q

 N will be found before J
L M N O P

G

Q

H JI K

FED

B C

A

Binary Trees page 15

Tree Traversals – Depth First

 Traversal of Binary Trees:
 There are 3 ways/orderings of traversing a

binary tree (all 3 are depth first search
methods):
 Preorder, Inorder, and Postorder
 These names are chosen according to the step at

which the root node is visited:
 With preorder traversal, the root is visited before its left

and right subtrees.
 With inorder traversal, the root is visited between the

subtrees.
 With postorder traversal, the root is visited after both

subtrees.

Binary Trees page 16

Tree Traversals - Preorder

 Preorder Traversal
 the root is visited before its left and right

subtrees
 For the following example, we assume we are printing

the nodes out

 Code for Preorder Traversal:
void preorder (struct tree_node *p) {

if (p != NULL) {
printf(“%d ”, p->data);
preorder(p->left_child);
preorder(p->right_child);

}
}

Binary Trees page 17

Tree Traversals - Preorder

a

b c

a b c

 Preorder Traversal – Example 1
 the root is visited before its left and right

subtrees

Binary Trees page 18

Tree Traversals - Preorder

a

b c

d e f

g h i j

a b d g h e i c f j

 Preorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 19

Tree Traversals - Inorder

 Inorder Traversal
 the root is visited between the subtrees

 For the following example, we assume we are printing
the nodes out

 Code for Inorder Traversal:
void inorder(struct tree_node *p) {

if (p !=NULL) {
inorder(p->left_child);
printf(“%d ”, p->data);
inorder(p->right_child);

}
}

Binary Trees page 20

Tree Traversals - Inorder

a

b c

b a c

 Inorder Traversal – Example 1
 the root is visited between the subtrees

Binary Trees page 21

Tree Traversals - Inorder

a

b c

d e f

g h i j

g d h b e i a f j c

 Inorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 22

Tree Traversals – Postorder

 Postorder Traversal
 the root is visited after both subtrees

 For the following example, we assume we are printing
the nodes out

 Code for Postorder Traversal:
void postorder (struct tree_node *p) {

if (p !=NULL) {
postorder(p->left_child);
postorder(p->right_child);
printf(“%d\n”, p->data);

}
}

Binary Trees page 23

Tree Traversals – Postorder

a

b c

b c a

 Postorder Traversal – Example 1
 the root is visited after both subtrees

Binary Trees page 24

Tree Traversals – Postorder

a

b c

d e f

g h i j

g h d i e b j f c a

 Postorder Traversal – Example 2

Order of Visiting Nodes:

Binary Trees page 25

Tree Traversals

 Final Traversal Example

Binary Trees page 26

Brief Interlude: Human Stupidity

Unfortunately, this
was here at UCF
near the Student
Union.

Picture courtesy
of Joe Gravelle.

Binary Trees page 27

Breadth-First Traversal

 A breadth-first search (BFS)
explores nodes nearest the
root before exploring nodes
further away

 For example, after
searching A, then B, then C,
the search proceeds with D,
E, F, G

 Node are explored in the
order A B C D E F G H I J K L
M N O P Q

 J will be found before N

L M N O P

G

Q

H JI K

FED

B C

A

Binary Trees page 28

Breadth-First Traversal

H

D

B

A C E G I K M O

N

L

JF

OMKIGECANJFBLDH

Binary Trees page 29

Breadth-First Traversal

 Coding the Breadth-First Traversal
 How would you do this?

 Think about it, how would you make this happen?
 SOLUTION:
1) Enqueue the root node.
2) Dequeue a node and examine it.

 If the element sought is found in this node, quit the search
and return a result.

 Otherwise enqueue any successors (the direct child nodes)
that have not yet been discovered.

 If the queue is empty, every node on the graph has been
examined – quit the search and return "not found".

 Repeat from Step 2.

Binary Trees page 30

Binary Search Tree

 Binary Search Trees
 We’ve seen how to traverse binary trees
 But it is not quite clear how this data structure

helps us
 What is the purpose of binary trees?

 What if we added a restriction…
 Consider the following

binary tree:

 What pattern can you see?

Binary Trees page 31

Binary Search Tree

 Binary Search Trees
 What pattern can you see?

 For each node N, all the values stored in the left subtree
of N are LESS than the value stored in N.

 Also, all the values stored in the right subtree of N are
GREATER than the value stored in N.

 Why might this property be a desireable one?
 Searching for a node is super fast!

 Normally, if we search through n nodes, it takes O(n) time
 But notice what is going on here:

 This ordering property of the tree tells us where to search
 We choose to look to the left or look to the right of a node
 We are HALVING the search space …O(log n) time

Binary Trees page 32

Binary Search Tree

 Binary Search Trees
 Details:

 All of the data values in the left subtree of each node are
smaller than the data value in the node (root of the subtree)
itself.
 Stated another way, the value of the node itself is larger than

the value of every node in its left subtree.
 All of the data values in the right subtree of each node are

larger than the data value in the node (root of the subtree)
itself.
 Stated another way, the value of the node itself is smaller than

the value of every node in its right subtree.
 Both the left and right subtrees of the node are themselves

binary search trees.

Binary Trees page 33

44

24

20

8 19

2815

30 42

36

40

65

56

62

6458

88

A Binary Search Tree

Binary Search Tree

Binary Trees page 34

Binary Search Tree

 Binary Search Trees
 Details:

 A binary search tree, commonly referred to as a BST, is
extremely useful for efficient searching

 Basically, a BST amounts to embedding the binary search
into the data structure itself.

 Notice how the root of every subtree in the BST on the
previous page is the root of a BST.

 This ordering of nodes in the tree means that insertions
into a BST are not placed arbitrarily

 Rather, there is a specific way to insert
 …and that is for next time

Binary Trees page 35

Binary Trees

WASN’T
THAT

HISTORIC!

Binary Trees page 36

Daily Demotivator

Computer Science Department
University of Central Florida

Binary Trees

COP 3502 – Computer Science I

Binary Trees page 38

Binary Tree Traversals – Practice Problems
3

54 71 11 56

15 36

7

26 14

33

22

19

87

8

13

9

75

28

10

63 69

59 68

44

Practice Tree #1

Solutions on page 33

Binary Trees page 39

Binary Tree Traversals – Practice Problems
3

54711156

1536

7

2614

33

22

19

87

8

13

9

75

28

10

6369

5968

44

Practice Tree #2

Solutions on Page 34

Binary Trees page 40

 Preorder Traversal:
3, 13, 22, 19, 26, 54, 71, 33, 14, 11, 87, 8, 56, 9, 75, 28, 15, 10, 63, 36, 7, 69,
59, 68, 44

 Inorder Traversal:
54, 26, 71, 19, 22, 11, 14, 33, 8, 87, 56, 13, 9, 75, 3, 63, 10, 15, 28, 59, 69, 68,
7, 36, 44

 Postorder Traversal:
54, 71, 26, 19, 11, 14, 8, 56, 87, 33, 22, 75, 9, 13, 63, 10, 15, 59, 68, 69, 7, 44,
36, 28, 3

Practice Problem Solutions – Tree #1

Binary Trees page 41

 Preorder Traversal:
3, 28, 36, 44, 7, 69, 68, 59, 15, 10, 63, 13, 9, 75, 22, 33, 87, 56, 8, 14, 11, 19,
26, 71, 54

 Inorder Traversal:
44, 36, 7, 68, 69, 59, 28, 15, 10, 63, 3, 75, 9, 13, 56, 87, 8, 33, 14, 11, 22, 19,
71, 26, 54

 Postorder Traversal:
44, 68, 59, 69, 7, 36, 63, 10, 15, 28, 75, 9, 56, 8, 87, 11, 14, 33, 71, 54, 26, 19,
22, 13, 3

Practice Problem Solutions – Tree #2

	Binary Trees
	Outline
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Stuff
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals – Depth First
	Tree Traversals - Preorder
	Tree Traversals - Preorder
	Tree Traversals - Preorder
	Tree Traversals - Inorder
	Tree Traversals - Inorder
	Tree Traversals - Inorder
	Tree Traversals – Postorder
	Tree Traversals – Postorder
	Tree Traversals – Postorder
	Tree Traversals
	Brief Interlude: Human Stupidity
	Breadth-First Traversal
	Breadth-First Traversal
	Breadth-First Traversal
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Trees
	Daily Demotivator
	Binary Trees
	
	
	
	

