
Computer Science Department
University of Central Florida

Binary Trees:
Practice Problems

COP 3502 – Computer Science I

Binary Trees: Practice Problems page 2

Binary Trees: Practice Problems

 Warmup Problem 1:
 Searching for a node in a BST

int find (struct tree_node *current_ptr, int val) {
// Check if there are nodes in the tree.
if (current_ptr != NULL) {

// Found the value at the root.
if (current_ptr->data == val)

return 1;
// Search to the left.
if (val < current_ptr->data)

return find(current_ptr->left, val);
// Or...search to the right.
else

return find(current_ptr->right, val);
}
else

return 0;
}

Binary Trees: Practice Problems page 3

Binary Trees: Practice Problems

 Warmup Problem 2:
 Searching for a node in an arbitrary tree

 Not a BST
 Doesn’t have the ordering property

int Find(struct tree_node *current_ptr, int val) {
if (current_ptr != NULL) {

if (current_prt->data == val)
return 1;

return (Find(current_ptr->left, val) ||
Find(current_ptr->right, val))

}
else

return 0;
}

Binary Trees: Practice Problems page 4

Binary Trees: Practice Problems

 Warmup Problem 3:
 Summing the values of nodes in a tree

int add(struct tree_node *current_ptr) {
if (current_ptr != NULL)

return current_ptr->data +
add(current_ptr->left)+ add(current_ptr->right);

else
return 0;

}

Binary Trees: Practice Problems page 5

Binary Trees: Practice Problems

 Count Nodes:
 Write a function that counts (and returns) the

number of nodes in a binary tree

 Details:
 If the “root” is not NULL, then the root increases our count

 Shown by the return of 1
 We then call count on the left and right subtrees of root

int count(struct tree_node *root) {
if (current_ptr != NULL)

return 1 + count(root->left)+ add(root->right);
else

return 0;
}

Binary Trees: Practice Problems page 6

Binary Trees: Practice Problems

 Count Leaf Nodes:
 Write a function that counts (and returns) the

number of leaf nodes in a binary tree

int numLeaves(struct tree_node *p) {
if (p!= NULL) {

if (p->left == NULL && p->right == NULL)
return 1;

else
return numLeaves(p->left) + numLeaves(p->right);

}
else

return 0;
}

Binary Trees: Practice Problems page 7

Binary Trees: Practice Problems

 Print Even Nodes:
 Write a function that prints out all even nodes in a

binary search tree

 This is basically just a traversal
 Except we added a condition (IF) statement before the

print statement

int printEven(struct tree_node *current_ptr) {
if (current_ptr != NULL) {

if (current_ptr->data % 2 == 0)
printf(“%d “, current_ptr->data);

printEven(current_ptr->left);
printEven(current_ptr->right);

}
}

Binary Trees: Practice Problems page 8

Binary Trees: Practice Problems

 Print Odd Nodes (in ascending order):
 Write a function that prints out all odd nodes, in a

binary search tree, in ascending order

 The question requested ascending order
 This requires an inorder traversal
 So we simply changed the order of the statements

int printOddAsc(struct tree_node *current_ptr) {
if (current_ptr != NULL) {

printOddAsc (current_ptr->left);
if (current_ptr->data % 2 == 1)

printf(“%d “, current_ptr->data);
printOddAsc (current_ptr->right);

}
}

Binary Trees: Practice Problems page 9

Brief Interlude: FAIL Picture

Binary Trees: Practice Problems page 10

Binary Trees: Practice Problems

 Compute Height:
 Write a recursive function to compute the height of

a tree
 Defined as the length of the longest path from the root to a

leaf node
 For the purposes of this problem,

 a tree with only one node has height 1
 and an empty tree has height 0

 Your function should make use of the following struct:
struct tree_node {

int data;
struct tree_node* left;
struct tree_node* right;

};

Binary Trees: Practice Problems page 11

Binary Trees: Practice Problems

 Compute Height:

int height(struct tree_node* root) {

int leftHeight, rightHeight;

if(root == NULL)
return 0;

leftHeight = height(root->left);
rightHeight = height(root->right);

if(leftHeight > rightHeight)
return leftHeight + 1;

return rightHeight + 1;
}

Binary Trees: Practice Problems page 12

Binary Trees: Practice Problems

 Find Largest:
 Write a recursive function that returns a pointer to

the node containing the largest element in a BST
 This one should be easy:
 This is a BST, meaning it has the ordering property
 So where is the largest node located

 either the root or the greatest node in the right subtree
 Your function should make use of the following struct:

struct tree_node {
int data;
struct tree_node* left;
struct tree_node* right;

};

Binary Trees: Practice Problems page 13

Binary Trees: Practice Problems

 Find Largest:
struct node* largest(struct tree_node *B) {

// if B is NULL, there is no node
if (B == NULL)

return NULL;
// If B’s right is NULL, that means B is the largest
else if (B->right == NULL)

return B;

// SO if B’s right was NOT equal to NULL,
// There is a right subtree of B.
// Which means that the largest value is in this
// subtree. So recursively call B’s right.
else

return largest(B->right);
}

Binary Trees: Practice Problems page 14

Binary Trees: Practice Problems

 Number of Single Children:
 In a binary tree, each node can have zero, one, or

two children
 Write a recursive function that returns the number

of nodes with a single child

 Your function should make use of the following
struct:

struct tree_node {
int data;
struct tree_node* left;
struct tree_node* right;

};

Binary Trees: Practice Problems page 15

Binary Trees: Practice Problems

 Number of Single Children:
int one (struct tree_node *p) {

if (p != NULL) {
if (p->left == NULL)

if (p->right != NULL)
return 1 + one(p->right);

else if (p->right == NULL)
if (p->left != NULL)

return 1 + one(p->left);
else

return one(p->left) + one(p->right);
}

}

Binary Trees: Practice Problems page 16

Binary Trees: Practice Problems

WASN’T
THAT

SPICY!

Binary Trees: Practice Problems page 17

Daily Demotivator

Computer Science Department
University of Central Florida

Binary Trees:
Practice Problems

COP 3502 – Computer Science I

	Binary Trees:�Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Brief Interlude: FAIL Picture
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Binary Trees: Practice Problems
	Daily Demotivator
	Binary Trees:�Practice Problems

