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Announcements

 No Quiz today!
 Yeah.

 Quiz is tomorrow, 11/2/2010
 #@%$
 Opens at 10:30 AM on Webcourses
 Must be finished by 11:55 PM on same day

 Program 5 will be assigned Wednesday
 Exam #2 on Friday, 11/5/2010
 Review will be on Wednesday
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 Quick Sort
 Most common sort used in practice
 Why?

 cuz it is usually the quickest in practice!

 Quick Sort uses two main ideas to achieve this 
efficiency:

1) The idea of making partitions
2) Recursion

 Let’s look at the partition concept…
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 Quick Sort – Partition
 A partition works as follows:
 Given an array of n elements

 You must manually select an element in the array to 
partition by

 You must then compare ALL the remaining elements 
against this element

 If they are greater,
 Put them to the “right” of the partition element

 If they are less,
 Put them to the “left” of the partition element
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 Quick Sort – Partition
 A partition works as follows:

 Once the partition is complete, what can we say about 
the position of the partition element?

 We can say (we KNOW) that the partition element is 
in its CORRECTLY sorted location

 In fact, after you partition the array, you are left with:
 all the elements to the left of the partition element, in the 

array, that still need to be sorted
 all the elements to the right of the partition element, in the 

array, that still need to be sorted
 And if you sort those two sides, the entire array will be 

sorted!
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 Quick Sort
 Partition:

 Essentially breaks down the sorting problem into two 
smaller sorting problems
 …what does that sound like?

 Code for Quick Sort (at a real general level):
1) Partition the array with respect to a random element
2) Sort the left part of the array using Quick Sort
3) Sort the right part of the array using Quick Sort

 Notice there is no “merge” step like in Merge Sort
 at the end, all elements are already in their proper order
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 Quick Sort
 Code for Quick Sort (at a real general level):

1) Partition the array with respect to a random element
2) Sort the left part of the array using Quick Sort
3) Sort the right part of the array using Quick Sort

 Quick Sort is a recursive algorithm:
 We need a base case

 A case that does NOT make recursive calls
 Our base case, or terminating condition, will be when we 

sort an array with only one element
 We know the array is already sorted!
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 Let S be the input set.
1. If |S| = 0 or |S| = 1, then return.
2. Pick an element v in S.  Call v the partition 

element.
3. Partition S – {v} into two disjoint groups:

• S1 = {x ∈ S – {v} | x ≤ v}
• S2 = {x ∈ S – {v} | x ≥ v}

4. Return { quicksort(S1), v, quicksort(S2) }

Sorting:  Quick Sort

 Quick Sort
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 The idea of “in place”
 In Computer Science, an “in-place” algorithm is 

one where the output usually overwrites the input
 There is more detail, but for our purposes, we stop with 

that

 Example:
 Say we wanted to reverse an array of n items

 Here is a simple way to do that:
function reverse(a[0..n]) {

allocate b[0..n]
for i from 0 to n

b[n - i] = a[i]
return b

}
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 The idea of “in place”
 Example:

 Say we wanted to reverse an array of n items
 Here is a simple way to do that:

 Unfortunately, this method requires O(n) extra space to 
create the array b
 And allocation can be a slow operation

function reverse(a[0..n]) {
allocate b[0..n]
for i from 0 to n

b[n - i] = a[i]
return b

}
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 The idea of “in place”
 Example:

 Say we wanted to reverse an array of n items
 If we no longer need the original array a
 We can overwrite it using the following in-place algorithm

 Many Sorting algorithms are in-place algorithms
 Quick sort is NOT an in-place algorithm
 BUT, the Partition algorithm can be in-place

function reverse-in-place(a[0..n])
for i from 0 to floor(n/2)

swap(a[i], a[n-i])



Sorting:  Quick Sort page 13

Sorting:  Quick Sort

 How to Partition “in-place”
 Consider the following list of values that we want 

to partition

 Let us assume for the time being that we will 
partition based on the first element in the array

 The algorithm will partition these elements
“in-place”

5 3 6 9 2 4 7 8
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 How to Partition “in-place”

 Here’s how the partition will work:
 Start two counters, one at index one and one at index 7

 The last element in the array
 Advance the left counter forward until an element greater 

than the partition element is encountered
 Advance the right counter backwards until a value less 

than the pivot is encountered

5 3 6 9 2 4 7 8
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 How to Partition “in-place”

 After these two steps are performed, we have:

5 3 6 9 2 4 7 8

5 3 6 9 2 4 7 8
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 How to Partition “in-place”

 We know that these two elements are on the 
“wrong” side of the array

5 3 6 9 2 4 7 8

5 3 4 9 2 6 7 8

…so SWAP them!
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 How to Partition “in-place”

 Now continue to advance the pointers as before

5 3 4 9 2 6 7 8

5 3 4 9 2 6 7 8
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 How to Partition “in-place”

 Then SWAP as before:

 At some point, the counters will cross over each other

5 3 4 9 2 6 7 8

5 3 4 2 9 6 7 8
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 How to Partition “in-place”

 Again, advance the pointers as before

 So we see that the counters crossed over each other

5 3 4 2 9 6 7 8

5 3 4 2 9 6 7 8
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 How to Partition “in-place”

 Now, SWAP the value stored in the original right 
counter (black arrow) with the partition element

 Finally, RETURN the index the five is stored in (the right 
pointer) to indicate where the partition element ended up

5 3 4 2 9 6 7 8

2 3 4 5 9 6 7 8
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 Partition Code
int partition(int* vals, int low, int high) {

int temp;
int i, lowpos;

// A base case that should never really occur.
if (low == high) return low;

// Pick a random partition element and swap it into index low.
i = low + rand()%(high-low+1);
temp = vals[i];
vals[i] = vals[low];
vals[low] = temp;

// Store the index of the partition element.
lowpos = low;

// Update our low pointer.
low++;
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 Partition Code
// Run Partition so long as low and high counters don't cross.
while (low <= high) {

// Move the low pointer forwards.
while (low <= high && vals[low] <= vals[lowpos]) low++;

// Move the high pointer backwards.
while (high >= low && vals[high] > vals[lowpos]) high--;

// Now swap the values at those two pointers.
if (low < high) 

swap(&vals[low], &vals[high]);
}

// Swap the partition element into it's correct location.
swap(&vals[lowpos], &vals[high]);

return high; // Return the index of the partition element.
}
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 Quick Sort Code
void quicksort(int* numbers, int low, int high) {

// Only have to sort if we are sorting more than one number
if (low < high) {

// Partition the elements
// Parition function returns the index of the
// partition element.  Saved into “split”.
int split = partition(numbers,low,high);

// Recursively Quick Sort the left side   
quicksort(numbers,low,split-1);

// Recursively Quick Sort the right side
quicksort(numbers,split+1,high);

}
}
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 Choosing a Partition Element
 For correctness, we can choose any pivot. 
 For efficiency, one of following is best case, the 

other worst case:
 pivot partitions the list roughly in half
 pivot is greatest or least element in list

 Which case above is best?
 Clearly, a partition element in the middle is ideal
 As it splits the list roughly in half

 But we don’t know where that element is
 So we have a few ways of choosing pivots

Sorting:  Quick Sort
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 Choosing a Partition Element
 first element

 bad if input is sorted or in reverse sorted order
 bad if input is nearly sorted
 variation: particular element (e.g. middle element)

 random element
 You could get lucky and choose the middle element
 You could be unlucky and choose the smallest or 

greatest element
 Resulting in a partition with ZERO elements on one side

 median of three elements
 choose the median of the left, right, and center 

elements

Sorting:  Quick Sort



Sorting:  Quick Sort page 26

 Choosing a Partition Element
 median of three elements

 choose the median of the left, right, and center 
elements

 There is extra expense with this method
 Picking three values
 Doing three comparisons

 But if the array is large, doing this little extra work will 
be small compared to the gains of a better partition

 You could also pick the median of 5 or 7 
elements
 The more you pick the better partition you get

Sorting:  Quick Sort
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Brief Interlude:  FAIL Picture
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 Quick Sort Analysis
 This is more difficult to do than Merge Sort

 Why?
 With Merge Sort, we knew that our recursive calls always 

had equal sized inputs
 Remember:  we would split the array of size n into two arrays 

of size n/2 (so the smaller arrays were always the same size)

 How is Quick Sort different?  (more difficult?)
 Each recursive call of Quick Sort could have a different 

sized set of numbers to sort
 Because the size of the sets is based on our partition element
 If partition element is in the middle, each set has about half
 Otherwise, one set is large and one is small
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 Quick Sort Analysis
 Location of partition element determines difficulty
1) If we get lucky

 and the partition element is ALWAYS in the middle:
 Then this is the BEST case

 As we will always be halving the amount of work left

2) If we are unlucky:
 and we ALWAYS choose the first or the last element in 

the list as our partition
 Then this is the WORST case

 As we will have not really sorted anything
 We simply reduced the 2-be-sorted amount by 1
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 Quick Sort Analysis
 Location of partition element determines difficulty
3) If we are neither lucky or unlucky:

 Most likely, we will have some great partitions
 Some bad partitions
 And some okay partitions

 So we need to analyze each case:
 Best case
 Average case
 Worst case

And we omit the Average Case 
due to its difficulty.
*You’ll get to see it in CS2.
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 Quick Sort Analysis
 Analysis of Best Case:

 As mentioned, in the best case, we get a perfect partition 
every single time

 Meaning, if we have n elements before the partition,
 we “luckily” pick the middle element as the partition element
 Then we end up with n/2 - 1 elements on each side of the 

partition
 So if we had 101 unsorted elements

 we “luckily” pick the 51st element as the partition element
 Then we end up with 50 elements smaller than this element, 

on the left
 And 50 elements, greater than this element, on the right
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 Quick Sort Analysis
 Analysis of Best Case:

 Again, here are the steps of Quick Sort:
1) Partition the elements
2) Quick Sort the smaller half (recursive)
3) Quick Sort the larger half (recursive)

 So at each recursive step, the input size is halved
 Let T(n) be the running time of Quick Sort on n elements

 And remember that Partition runs on O(n) time
 So we get our recurrence relation for the best case:

 T(n) = 2*T(n/2) + O(n)
 This is the same recurrence relation as Merge Sort

 So in the best case, Quick Sort runs in O(nlogn) time
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 Quick Sort Analysis
 Analysis of Worst Case:

 Assume that we are horribly unlucky
 And when choosing the partition element, we somehow 

end up always choosing the greatest value remaining
 Now for this worst case:

 How many times will the Partition function run?
 Think:  when we choose the greatest element (for example)
 We have the partition element, then ALL other elements are to 

the left in one partition
 The “partition” to the right will have ZERO elements

 So Partition will run n-1 times
 The first time results in comparing n-1 values, then comparing

n-2 values the second time, followed by n-3, etc.
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 Quick Sort Analysis
 Analysis of Worst Case:

 How many times will the Partition function run?
 Partition will run n-1 times

 The first time results in comparing n-1 values, then comparing
n-2 values the second time, followed by n-3, etc.

 When we sum the number of compares, we get:
 1 + 2 + 3 + … + (n - 1)
 You should know what this equals:

 Thus, the worst case running time is O(n2)
2

)1( nn −
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 Quick Sort Analysis
 Summary:

 Best Case:  O(nlogn)
 Average Case:  O(nlogn)
 Worst Case:  O(n2)

 Compare Merge Sort and Quick Sort:
 Merge Sort:  guaranteed O(nlogn)
 Quick Sort:  best and average case is O(nlogn) but worst 

case is O(n2)
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WASN’T
THAT

THE GREATEST!
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Daily Demotivator
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