
Computer Science Department
University of Central Florida

Sorting:
Quick Sort

COP 3502 – Computer Science I

Sorting: Quick Sort page 2

Announcements

 No Quiz today!
 Yeah.

 Quiz is tomorrow, 11/2/2010
 #@%$
 Opens at 10:30 AM on Webcourses
 Must be finished by 11:55 PM on same day

 Program 5 will be assigned Wednesday
 Exam #2 on Friday, 11/5/2010
 Review will be on Wednesday

Sorting: Quick Sort page 3

Sorting: Quick Sort

 Quick Sort
 Most common sort used in practice
 Why?

 cuz it is usually the quickest in practice!

 Quick Sort uses two main ideas to achieve this
efficiency:

1) The idea of making partitions
2) Recursion

 Let’s look at the partition concept…

Sorting: Quick Sort page 4

Sorting: Quick Sort

 Quick Sort – Partition
 A partition works as follows:
 Given an array of n elements

 You must manually select an element in the array to
partition by

 You must then compare ALL the remaining elements
against this element

 If they are greater,
 Put them to the “right” of the partition element

 If they are less,
 Put them to the “left” of the partition element

Sorting: Quick Sort page 5

Sorting: Quick Sort

 Quick Sort – Partition
 A partition works as follows:

 Once the partition is complete, what can we say about
the position of the partition element?

 We can say (we KNOW) that the partition element is
in its CORRECTLY sorted location

 In fact, after you partition the array, you are left with:
 all the elements to the left of the partition element, in the

array, that still need to be sorted
 all the elements to the right of the partition element, in the

array, that still need to be sorted
 And if you sort those two sides, the entire array will be

sorted!

Sorting: Quick Sort page 6

Sorting: Quick Sort

 Quick Sort
 Partition:

 Essentially breaks down the sorting problem into two
smaller sorting problems
 …what does that sound like?

 Code for Quick Sort (at a real general level):
1) Partition the array with respect to a random element
2) Sort the left part of the array using Quick Sort
3) Sort the right part of the array using Quick Sort

 Notice there is no “merge” step like in Merge Sort
 at the end, all elements are already in their proper order

Sorting: Quick Sort page 7

Sorting: Quick Sort

 Quick Sort
 Code for Quick Sort (at a real general level):

1) Partition the array with respect to a random element
2) Sort the left part of the array using Quick Sort
3) Sort the right part of the array using Quick Sort

 Quick Sort is a recursive algorithm:
 We need a base case

 A case that does NOT make recursive calls
 Our base case, or terminating condition, will be when we

sort an array with only one element
 We know the array is already sorted!

Sorting: Quick Sort page 8

 Let S be the input set.
1. If |S| = 0 or |S| = 1, then return.
2. Pick an element v in S. Call v the partition

element.
3. Partition S – {v} into two disjoint groups:

• S1 = {x ∈ S – {v} | x ≤ v}
• S2 = {x ∈ S – {v} | x ≥ v}

4. Return { quicksort(S1), v, quicksort(S2) }

Sorting: Quick Sort

 Quick Sort

Sorting: Quick Sort page 9

40

10

18

32

2

35

37

17
6

12

pick a pivot

6

10 12 2
17

18

40 37
32 35

partition

quicksort quicksort

1810 12 1762 40373532

combine

1810 12 1762 40373532

Sorting: Quick Sort

Sorting: Quick Sort page 10

Sorting: Quick Sort

 The idea of “in place”
 In Computer Science, an “in-place” algorithm is

one where the output usually overwrites the input
 There is more detail, but for our purposes, we stop with

that

 Example:
 Say we wanted to reverse an array of n items

 Here is a simple way to do that:
function reverse(a[0..n]) {

allocate b[0..n]
for i from 0 to n

b[n - i] = a[i]
return b

}

Sorting: Quick Sort page 11

Sorting: Quick Sort

 The idea of “in place”
 Example:

 Say we wanted to reverse an array of n items
 Here is a simple way to do that:

 Unfortunately, this method requires O(n) extra space to
create the array b
 And allocation can be a slow operation

function reverse(a[0..n]) {
allocate b[0..n]
for i from 0 to n

b[n - i] = a[i]
return b

}

Sorting: Quick Sort page 12

Sorting: Quick Sort

 The idea of “in place”
 Example:

 Say we wanted to reverse an array of n items
 If we no longer need the original array a
 We can overwrite it using the following in-place algorithm

 Many Sorting algorithms are in-place algorithms
 Quick sort is NOT an in-place algorithm
 BUT, the Partition algorithm can be in-place

function reverse-in-place(a[0..n])
for i from 0 to floor(n/2)

swap(a[i], a[n-i])

Sorting: Quick Sort page 13

Sorting: Quick Sort

 How to Partition “in-place”
 Consider the following list of values that we want

to partition

 Let us assume for the time being that we will
partition based on the first element in the array

 The algorithm will partition these elements
“in-place”

5 3 6 9 2 4 7 8

Sorting: Quick Sort page 14

Sorting: Quick Sort

 How to Partition “in-place”

 Here’s how the partition will work:
 Start two counters, one at index one and one at index 7

 The last element in the array
 Advance the left counter forward until an element greater

than the partition element is encountered
 Advance the right counter backwards until a value less

than the pivot is encountered

5 3 6 9 2 4 7 8

Sorting: Quick Sort page 15

Sorting: Quick Sort

 How to Partition “in-place”

 After these two steps are performed, we have:

5 3 6 9 2 4 7 8

5 3 6 9 2 4 7 8

Sorting: Quick Sort page 16

Sorting: Quick Sort

 How to Partition “in-place”

 We know that these two elements are on the
“wrong” side of the array

5 3 6 9 2 4 7 8

5 3 4 9 2 6 7 8

…so SWAP them!

Sorting: Quick Sort page 17

Sorting: Quick Sort

 How to Partition “in-place”

 Now continue to advance the pointers as before

5 3 4 9 2 6 7 8

5 3 4 9 2 6 7 8

Sorting: Quick Sort page 18

Sorting: Quick Sort

 How to Partition “in-place”

 Then SWAP as before:

 At some point, the counters will cross over each other

5 3 4 9 2 6 7 8

5 3 4 2 9 6 7 8

Sorting: Quick Sort page 19

Sorting: Quick Sort

 How to Partition “in-place”

 Again, advance the pointers as before

 So we see that the counters crossed over each other

5 3 4 2 9 6 7 8

5 3 4 2 9 6 7 8

Sorting: Quick Sort page 20

Sorting: Quick Sort

 How to Partition “in-place”

 Now, SWAP the value stored in the original right
counter (black arrow) with the partition element

 Finally, RETURN the index the five is stored in (the right
pointer) to indicate where the partition element ended up

5 3 4 2 9 6 7 8

2 3 4 5 9 6 7 8

Sorting: Quick Sort page 21

Sorting: Quick Sort

 Partition Code
int partition(int* vals, int low, int high) {

int temp;
int i, lowpos;

// A base case that should never really occur.
if (low == high) return low;

// Pick a random partition element and swap it into index low.
i = low + rand()%(high-low+1);
temp = vals[i];
vals[i] = vals[low];
vals[low] = temp;

// Store the index of the partition element.
lowpos = low;

// Update our low pointer.
low++;

Sorting: Quick Sort page 22

Sorting: Quick Sort

 Partition Code
// Run Partition so long as low and high counters don't cross.
while (low <= high) {

// Move the low pointer forwards.
while (low <= high && vals[low] <= vals[lowpos]) low++;

// Move the high pointer backwards.
while (high >= low && vals[high] > vals[lowpos]) high--;

// Now swap the values at those two pointers.
if (low < high)

swap(&vals[low], &vals[high]);
}

// Swap the partition element into it's correct location.
swap(&vals[lowpos], &vals[high]);

return high; // Return the index of the partition element.
}

Sorting: Quick Sort page 23

Sorting: Quick Sort

 Quick Sort Code
void quicksort(int* numbers, int low, int high) {

// Only have to sort if we are sorting more than one number
if (low < high) {

// Partition the elements
// Parition function returns the index of the
// partition element. Saved into “split”.
int split = partition(numbers,low,high);

// Recursively Quick Sort the left side
quicksort(numbers,low,split-1);

// Recursively Quick Sort the right side
quicksort(numbers,split+1,high);

}
}

Sorting: Quick Sort page 24

 Choosing a Partition Element
 For correctness, we can choose any pivot.
 For efficiency, one of following is best case, the

other worst case:
 pivot partitions the list roughly in half
 pivot is greatest or least element in list

 Which case above is best?
 Clearly, a partition element in the middle is ideal
 As it splits the list roughly in half

 But we don’t know where that element is
 So we have a few ways of choosing pivots

Sorting: Quick Sort

Sorting: Quick Sort page 25

 Choosing a Partition Element
 first element

 bad if input is sorted or in reverse sorted order
 bad if input is nearly sorted
 variation: particular element (e.g. middle element)

 random element
 You could get lucky and choose the middle element
 You could be unlucky and choose the smallest or

greatest element
 Resulting in a partition with ZERO elements on one side

 median of three elements
 choose the median of the left, right, and center

elements

Sorting: Quick Sort

Sorting: Quick Sort page 26

 Choosing a Partition Element
 median of three elements

 choose the median of the left, right, and center
elements

 There is extra expense with this method
 Picking three values
 Doing three comparisons

 But if the array is large, doing this little extra work will
be small compared to the gains of a better partition

 You could also pick the median of 5 or 7
elements
 The more you pick the better partition you get

Sorting: Quick Sort

Sorting: Quick Sort page 27

Brief Interlude: FAIL Picture

Sorting: Quick Sort page 28

Sorting: Quick Sort

 Quick Sort Analysis
 This is more difficult to do than Merge Sort

 Why?
 With Merge Sort, we knew that our recursive calls always

had equal sized inputs
 Remember: we would split the array of size n into two arrays

of size n/2 (so the smaller arrays were always the same size)

 How is Quick Sort different? (more difficult?)
 Each recursive call of Quick Sort could have a different

sized set of numbers to sort
 Because the size of the sets is based on our partition element
 If partition element is in the middle, each set has about half
 Otherwise, one set is large and one is small

Sorting: Quick Sort page 29

Sorting: Quick Sort

 Quick Sort Analysis
 Location of partition element determines difficulty
1) If we get lucky

 and the partition element is ALWAYS in the middle:
 Then this is the BEST case

 As we will always be halving the amount of work left

2) If we are unlucky:
 and we ALWAYS choose the first or the last element in

the list as our partition
 Then this is the WORST case

 As we will have not really sorted anything
 We simply reduced the 2-be-sorted amount by 1

Sorting: Quick Sort page 30

Sorting: Quick Sort

 Quick Sort Analysis
 Location of partition element determines difficulty
3) If we are neither lucky or unlucky:

 Most likely, we will have some great partitions
 Some bad partitions
 And some okay partitions

 So we need to analyze each case:
 Best case
 Average case
 Worst case

And we omit the Average Case
due to its difficulty.
*You’ll get to see it in CS2.

Sorting: Quick Sort page 31

Sorting: Quick Sort

 Quick Sort Analysis
 Analysis of Best Case:

 As mentioned, in the best case, we get a perfect partition
every single time

 Meaning, if we have n elements before the partition,
 we “luckily” pick the middle element as the partition element
 Then we end up with n/2 - 1 elements on each side of the

partition
 So if we had 101 unsorted elements

 we “luckily” pick the 51st element as the partition element
 Then we end up with 50 elements smaller than this element,

on the left
 And 50 elements, greater than this element, on the right

Sorting: Quick Sort page 32

Sorting: Quick Sort

 Quick Sort Analysis
 Analysis of Best Case:

 Again, here are the steps of Quick Sort:
1) Partition the elements
2) Quick Sort the smaller half (recursive)
3) Quick Sort the larger half (recursive)

 So at each recursive step, the input size is halved
 Let T(n) be the running time of Quick Sort on n elements

 And remember that Partition runs on O(n) time
 So we get our recurrence relation for the best case:

 T(n) = 2*T(n/2) + O(n)
 This is the same recurrence relation as Merge Sort

 So in the best case, Quick Sort runs in O(nlogn) time

Sorting: Quick Sort page 33

Sorting: Quick Sort

 Quick Sort Analysis
 Analysis of Worst Case:

 Assume that we are horribly unlucky
 And when choosing the partition element, we somehow

end up always choosing the greatest value remaining
 Now for this worst case:

 How many times will the Partition function run?
 Think: when we choose the greatest element (for example)
 We have the partition element, then ALL other elements are to

the left in one partition
 The “partition” to the right will have ZERO elements

 So Partition will run n-1 times
 The first time results in comparing n-1 values, then comparing

n-2 values the second time, followed by n-3, etc.

Sorting: Quick Sort page 34

Sorting: Quick Sort

 Quick Sort Analysis
 Analysis of Worst Case:

 How many times will the Partition function run?
 Partition will run n-1 times

 The first time results in comparing n-1 values, then comparing
n-2 values the second time, followed by n-3, etc.

 When we sum the number of compares, we get:
 1 + 2 + 3 + … + (n - 1)
 You should know what this equals:

 Thus, the worst case running time is O(n2)
2

)1(nn −

Sorting: Quick Sort page 35

Sorting: Quick Sort

 Quick Sort Analysis
 Summary:

 Best Case: O(nlogn)
 Average Case: O(nlogn)
 Worst Case: O(n2)

 Compare Merge Sort and Quick Sort:
 Merge Sort: guaranteed O(nlogn)
 Quick Sort: best and average case is O(nlogn) but worst

case is O(n2)

Sorting: Quick Sort page 36

Sorting: Quick Sort

WASN’T
THAT

THE GREATEST!

Sorting: Quick Sort page 37

Daily Demotivator

Computer Science Department
University of Central Florida

Sorting:
Quick Sort

COP 3502 – Computer Science I

	Sorting:�Quick Sort
	Announcements
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Brief Interlude: FAIL Picture
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Sorting: Quick Sort
	Daily Demotivator
	Sorting:�Quick Sort

