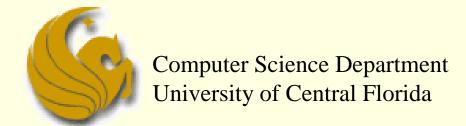
Binary Heaps & Priority Queues



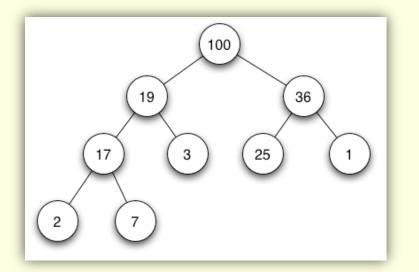
COP 3502 - Computer Science I

Heap:

- A heap is an Abstract Data Type
 - Just like stacks and queues are ADTs
 - Meaning, we will define certain behaviors that dictate whether or not a certain data structure is a heap
- So what is a heap?
 - More specifically, what does it do or how do they work?
- A heap looks similar to a tree
 - But a heap has a specific property/invariant that each node in the tree MUST follow

Heap:

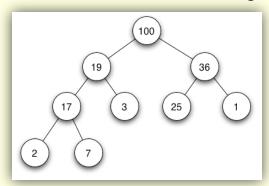
- In a heap, all values stored in the subtree of a given node <u>must be</u> less than or equal to the value stored in that node
 - This is known as the <u>heap property</u>



And it is this property that makes a heap a heap!

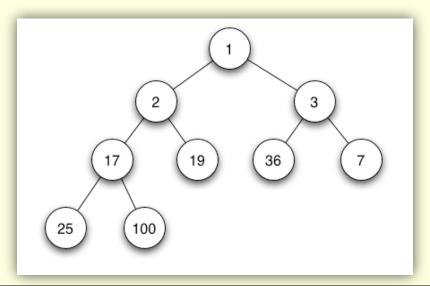
Heap:

- In a heap, all values stored in the subtree of a given node <u>must be</u> less than or equal to the value stored in that node
 - If B is a child of node A, then the value of node A must be greater than or equal to the value of node B
 - This is a called a Max-Heap
 - Where the root stores the highest value of any given subtree



Heap:

- Alternatively, if all values stored in the subtree of a given node are greater than or equal to the value stored in that node
 - This is called a <u>Min-Heap</u> (where root is smallest value)



- What we just described was a basic Heap
- Now for a heap to be <u>Binary Heap</u>, it must adhere to one other property:
- The Shape Property:
 - The heap must be a <u>complete binary tree</u>
 - Meaning, all levels of the tree, except possibly the last one, must be fully filled
 - And if the last level is not complete, the nodes of the level are filled from left to right
 - ***And it just so happens that the previous pictures shown were all examples of binary heaps

Building a Complete Binary Tree:

Root

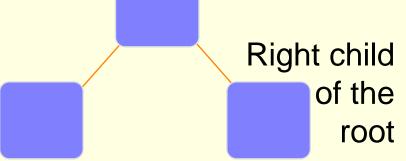
When a complete binary tree is built, its first node must be the root.

Building a Complete Binary Tree:

Left child of the root

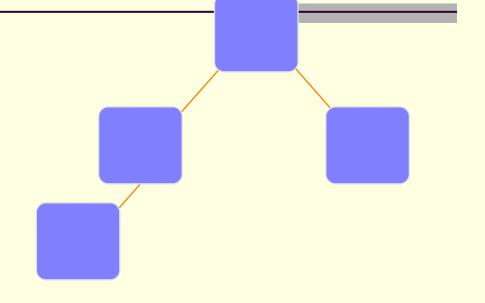
The second node is always the left child of the root.

Building a Complete Binary Tree:

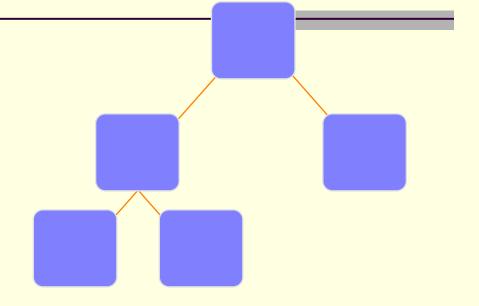


The third node is always the right child of the root.

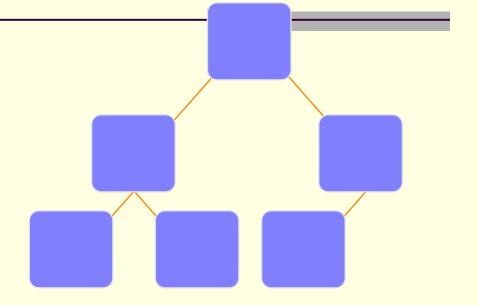
Building a Complete Binary Tree:



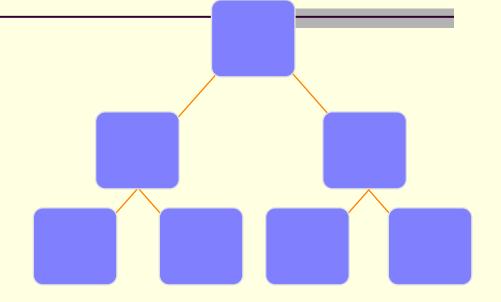
Building a Complete Binary Tree:



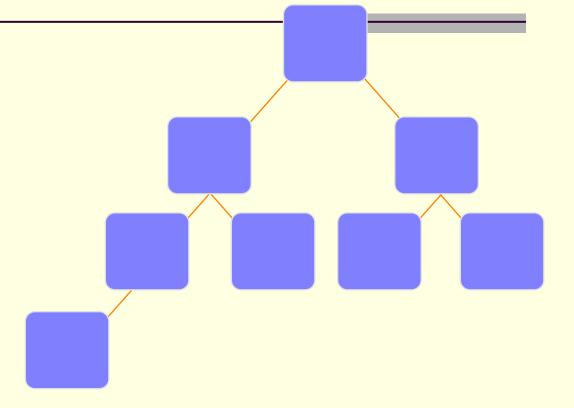
Building a Complete Binary Tree:



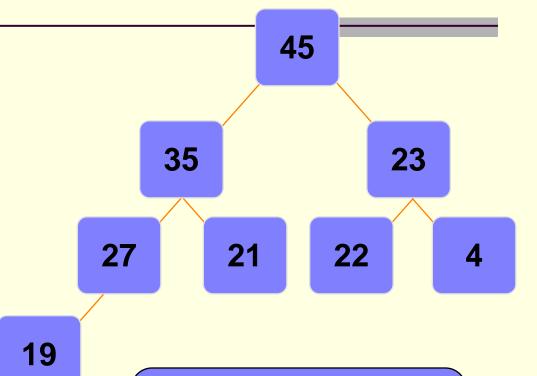
Building a Complete Binary Tree:



Building a Complete Binary Tree:



Building a Complete Binary Tree:



This is an example of a **MaxHeap**

Each node in a heap contains a key that can be compared to other nodes' keys.

- New nodes are always added at the lowest level
 - And are inserted from left to right
- There is no particular relationship among the data items in nodes on any given level
 - Even if the nodes have the same parent
 - Example: the right node does not necessarily have to be larger than the left node (as in BSTs)
- The only ordering property for heaps is the one already defined
 - Root of any given subtree is either largest or smallest element in that tree...either a max-heap or a min-heap

- Binary Heap:
 - The tree never becomes unbalanced
 - A heap is not a sorted structure
 - But it can be regarded as partially ordered
 - Since the minimum value is always at the root
 - A given set of data can be formed into many different heaps
 - Depending on the order in which the data arrives

- Binary Heap:
 - "Okay, great...whupdedoo"
 - Yeah, we now know what a binary heap is
 - But how does it help us?
 - What is its purpose?
 - Binary heaps are usually used to implement another abstract data type:
 - A priority queue

Priority Queues:

- A priority queue is basically what it sounds like
 - it is a queue
 - Which means that we will have a line
 - But the first person in line is not necessarily the first person out of line
 - Rather, the <u>queuing order is based on a priority</u>
 - Meaning, if one person has a higher priority, that person goes right to the front
- Examples:
 - Emergency room:
 - Higher priority injuries are taken first

Priority Queues:

- The model:
 - Requests are inserted in the order of arrival
 - The request with the highest priority is processed first
 - Meaning, it is removed from the queue
 - Priority can be indicated by a number
 - But you have to determine what has most priority
 - Maybe your application results in smallest number having the highest priority
 - Maybe the largest number has the highest priority
 - This really isn't important and is an implementation detail

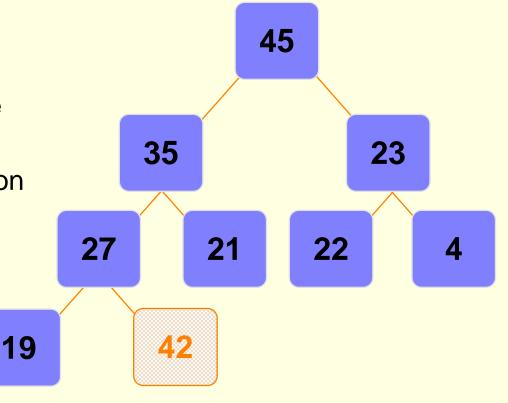
- Priority Queues:
 - So how could we implement a priority queue?
 - Sorted Linked List
 - Higher priority items are ALWAYS at the front of the list
 - Example: a check out line in a supermarket
 - But people who are more important can cut in line
 - Running Time:
 - O(n) insertion time: you have to search through, potentially, n nodes to find the correct spot (based on priority)
 - O(1) deletion time (finding the node with the highest priority) since the highest priority node is first node of the list

- Priority Queues:
 - So how could we implement a priority queue?
 - Unsorted Linked List
 - Keep a list of elements as a queue
 - To add an element, append it to the end
 - To remove an element, search through all the elements for the one with the highest priority
 - Running Time:
 - O(1) insertion time: you simple add to the end of the list
 - O(n) deletion time: you have to, potentially, search through all n nodes to find the correct node to delete

- Priority Queues:
 - So how could we implement a priority queue?
 - Correct Method: Binary Heap!
 - We use a binary heap to implement a priority queue
 - So we are using one abstract data type to implement another abstract data type
 - Running time ends up being O(logn) for both insertion and deletion into a Heap
 - FindMin (finding the minimum) ends up being O(1)
 - So now we look at how to maintain a heap/priority queue
 - How to insert into and delete from a heap
 - And how to build a heap

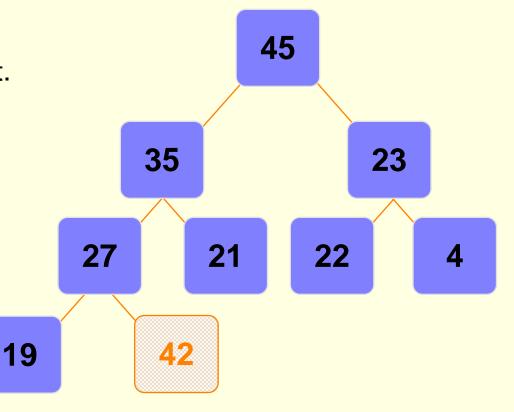
- Adding Nodes to a Binary Heap
 - Assume the existence of a current heap
 - Remember:
 - The binary heap MUST follow the Shape property
 - The tree must be balanced
 - Insertions will be made in the next available spot
 - Meaning, at the last level
 - and at the next spot, going from left to right
 - But what will most likely happen when you do this?
 - The Heap property will NOT be maintained

- Adding Nodes to a Binary Heap
- Given this Binary Heap:
 - And it is a Max-heap
- We now add a new node
 - With data value 42
- We add at the last position
- But this voids the Heap Property
 - 42 is greater than both 27 and 35
- So we must fix this!

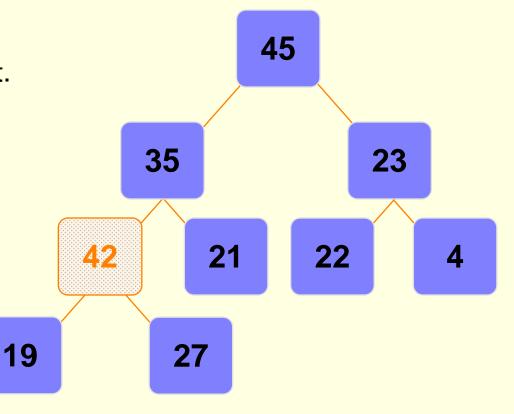


- Adding Nodes to a Binary Heap
 - Percolate Up procedure
 - In order to fix the out of place node, we must follow the following "Percolate Up" procedure
 - If the parent of the newly inserted node is less than the newly inserted node
 - Then SWAP them
 - This counts as one "Percolate Up" step
 - Continue this process until the new node finds the correct spot
 - Continue SWAPPING until the parent of the new node has a value that is greater than the new node
 - Or if the new node reaches all the way to the root
 - This is now the new "home" for this node

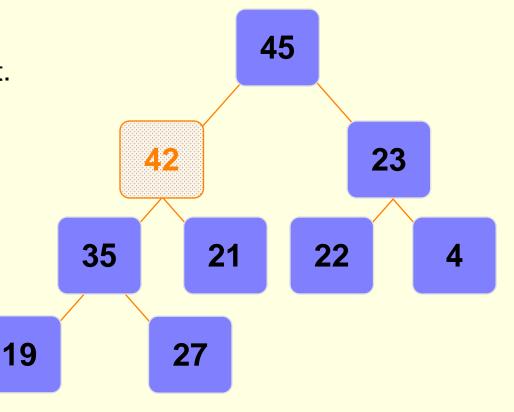
- Adding Nodes to a Binary Heap
- Put the new node in the next available spot.
- Push the new node upward, swapping with its parent until the new node reaches an acceptable location.



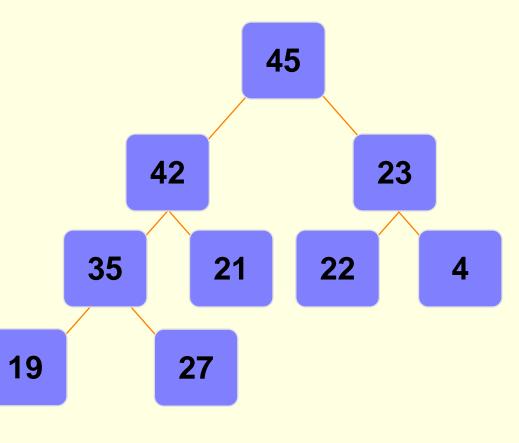
- Adding Nodes to a Binary Heap
- Put the new node in the next available spot.
- Push the new node upward, swapping with its parent until the new node reaches an acceptable location.



- Adding Nodes to a Binary Heap
- Put the new node in the next available spot.
- Push the new node upward, swapping with its parent until the new node reaches an acceptable location.



- Adding Nodes to a Binary Heap
- 42 has now reached an acceptable location
- Its parent (node 45) has a value that is greater than 42
- This process is called Percolate Up
- Other books call it Heapification Upward
- What is important is how it works



- Adding Nodes to a Binary Heap
 - Percolate Up procedure
 - What is the Big-O running time of insertion into a heap?
 - Inserting the element is simply O(1)
 - We simply insert at the last position
 - And you will see (in a bit) how we quick access to this position
 - But when we do this,
 - We need to fix the tree to maintain the Heap Property
 - Percolate Up takes O(logn) time
 - Why?
 - Because the height of the tree is log n
 - Worst case scenario is having to SWAP all the way to the root
 - So the overall running time of an insertion is O(logn)

- Deleting Nodes from a Binary Heap
 - We will write a function called deleteMin
 - Which node will we ALWAYS be deleting?
 - Remember:
 - We are using a Heap to implement a priority queue!
 - And in a priority queue, we always delete the first element
 - The one with the highest priority
 - So we will ALWAYS be deleting the ROOT of the tree
 - So this is quite easy!
 - deleteMin simply deletes the root and returns its value to main

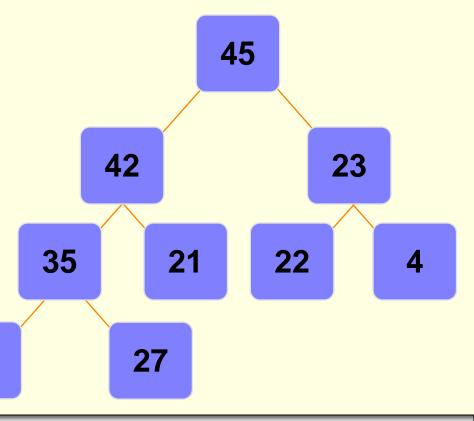
- Deleting Nodes from a Binary Heap
 - We will write a function called deleteMin
 - deleteMin simply deletes the root and returns its value to main
 - But what will happen when we delete the root?
 - We will have a tree with no root!
 - The root will be missing
 - So clearly this needs to be fixed

This process is for a Max-heap

- Deleting Nodes from a Binary Heap
 - Fixing the tree after deleting the root:
 - 1) Copy the last node of the tree into the position of the root
 - 2) Then remove that last node (to avoid duplicates)
 - Note: The new root is almost assuredly out of place
 - Most likely, one, or both, of its children will have a greater value than it
 - If so:
 - 3) Swap the new root node with the **greater** of its child nodes
 - This is considered one "Percolate Down" step
 - Continue this process until the "last node" ends up in a spot where its children have values smaller than it
 - Neither child can have a value greater than it

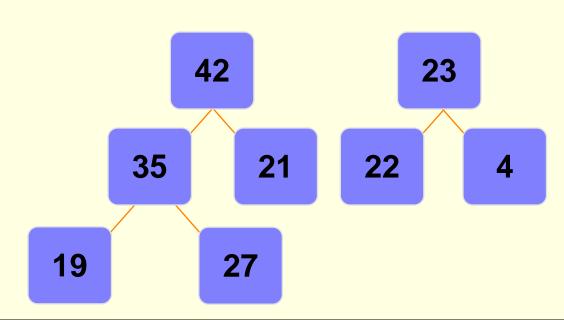
Deleting Nodes from a Binary Heap

- Given the following Heap:
- We perform a delete
- Which means 45 will get deleted

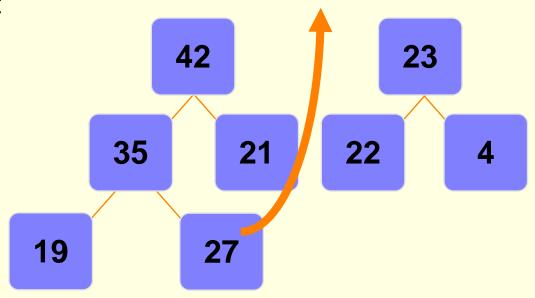


19

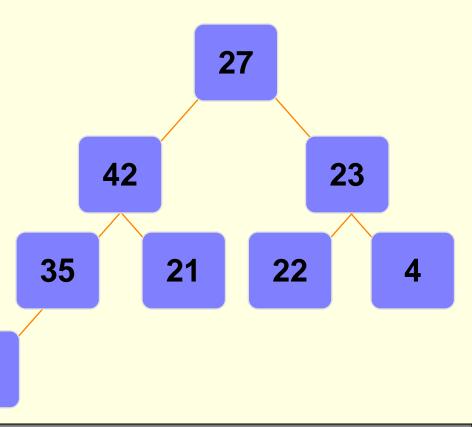
- Deleting Nodes from a Binary Heap
- Given the following Heap:
- We perform a delete
- Which means 45 will get deleted



- Deleting Nodes from a Binary Heap
- The last node now gets moved to the root
- So 27 goes to the root



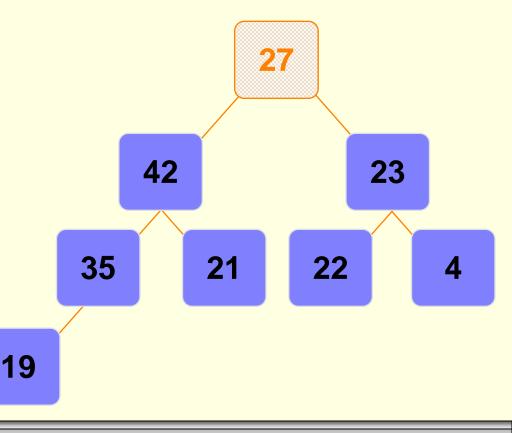
- Deleting Nodes from a Binary Heap
- The last node now gets moved to the root
- So 27 goes to the root
- 27 is now out of place
- We must Percolate Down



19

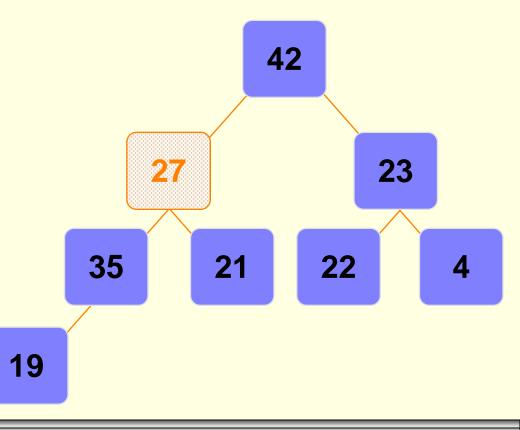
Deleting Nodes from a Binary Heap

- Push the out-of-place node downward,
 - swapping with its larger child
- until the out-of-place node reaches an acceptable location



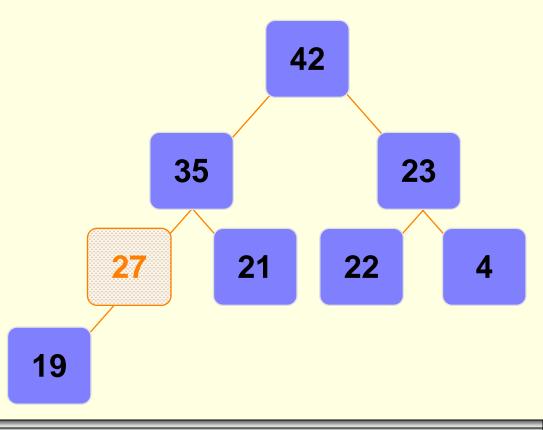
Deleting Nodes from a Binary Heap

- Push the out-of-place node downward,
 - swapping with its larger child
- until the out-of-place node reaches an acceptable location



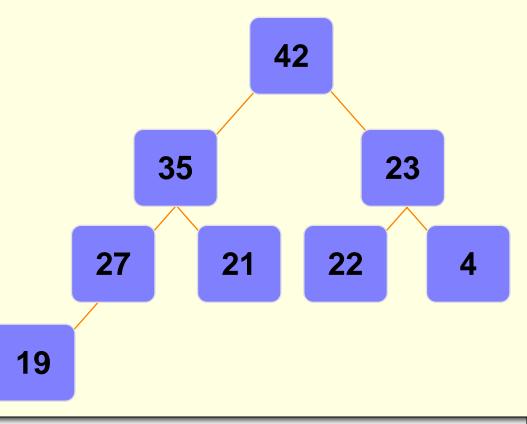
Deleting Nodes from a Binary Heap

- Push the out-of-place node downward,
 - swapping with its larger child
- until the out-of-place node reaches an acceptable location



Deleting Nodes from a Binary Heap

- 27 has reached an acceptable location
- Its lone child (19) has a value that is less than 27
- So we stop the Percolate Down procedure at this point



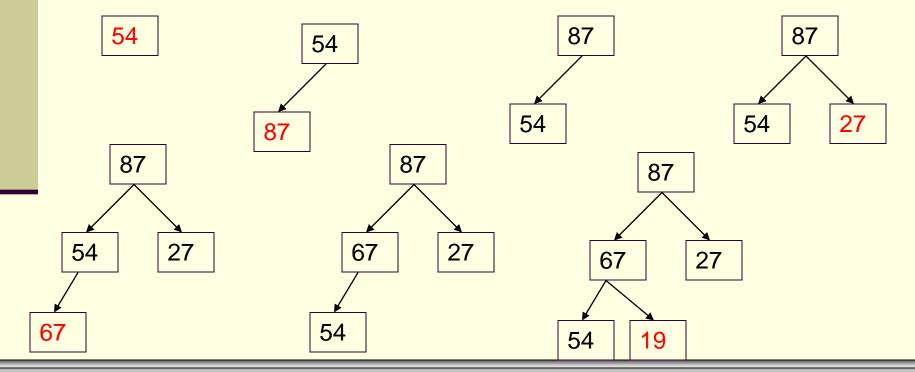
Deleting Nodes from a Binary Heap

- What is the Big-O running time of deletion from a heap?
- Deleting the minimum value is O(1)
 - cause the minimum value is at the root
 - and we can delete the root of a tree in O(1) time
- But now we need to fix the tree
 - Moving the last node to the root is an O(1) step
 - But then we need to Percolate Down
- Percolate Down takes O(logn)
 - Why?
 - Because the height of the tree is log n
 - And the worst case scenario is having to SWAP all the way to the farthest leaf
- So the overall running time of a deletion is O(logn)

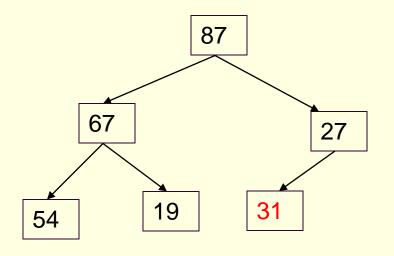
Brief Interlude: FAIL Picture

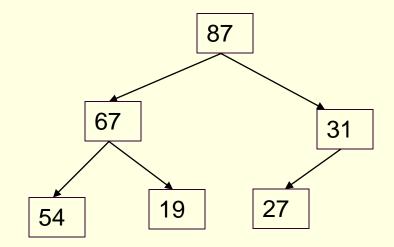
- Building a Heap from scratch
 - Given: an unsorted list of n values
 - **54**, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31
 - How can we build a heap from these values?
 - It is really just a series of "insertions"
 - Simply insert the n elements into the heap in the order that they arrive (in our case, from left to right)
 - WHILE there are more elements:
 - Insert the next element
 - 2) Percolate Up to a suitable position
 - Once all elements are inserted, we have our heap

- Building a Heap from scratch
 - Given: an unsorted list of n values
 - **54**, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31

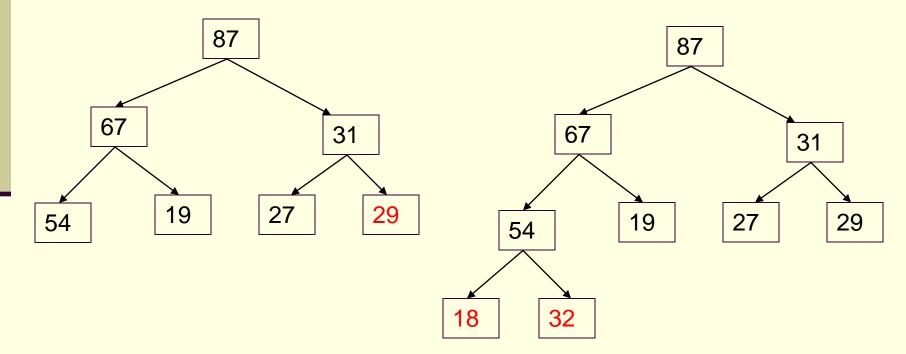


- Building a Heap from scratch
 - Given: an unsorted list of n values
 - **54**, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31





- Building a Heap from scratch
 - Given: an unsorted list of n values
 - **54**, 87, 27, 67, 19, 31, 29, 18, 32, 56, 7, 12, 31



- Building a Heap from scratch
 - Running time:
 - How long does it take to do one insertion?
 - We just covered this!
 - An insertion takes O(logn)
 - As in the worst case, it has to Percolate all the way Up to root
 - And we have **n** elements to insert
 - Running time to make a heap from n elements is O(nlogn)

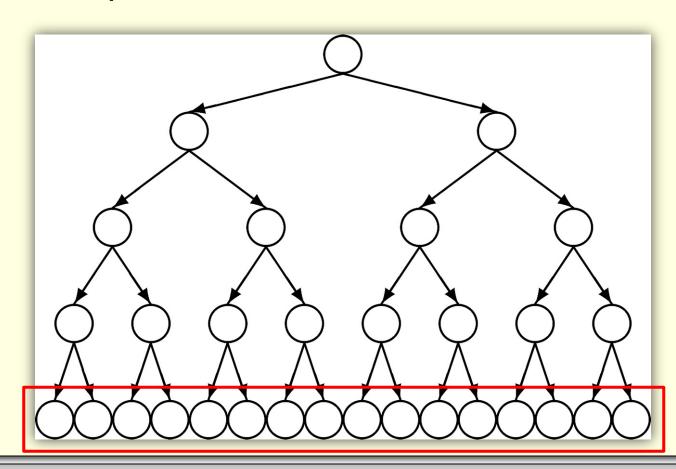
- Building a Heap from scratch
 - Can we do better than O(nlogn) time?
 - Turns out that we can
 - Start by arbitrarily placing your elements into a complete binary tree
 - Then, starting at the lowest level,
 - Perform a Percolate Down (if necessary)
 - So we work from the bottom and go up to the root
 - Performing a Percolate Down at each node
 - Only if necessary
 - This function is known as <u>Heapify</u>

- Building a Heap from scratch
 - Running time:
 - Note:
 - Realize that for any given complete tree, that is completely filled, the lowest level has ½ of the total nodes in a tree
 - In a complete tree of 31 nodes, the lowest level has 16 nodes
 - And since they are already at the lowest level,
 - Those 16 nodes will NOT need to Percolate Down

Building a Heap from scratch

These nodes do NOT have to Percolate Down!

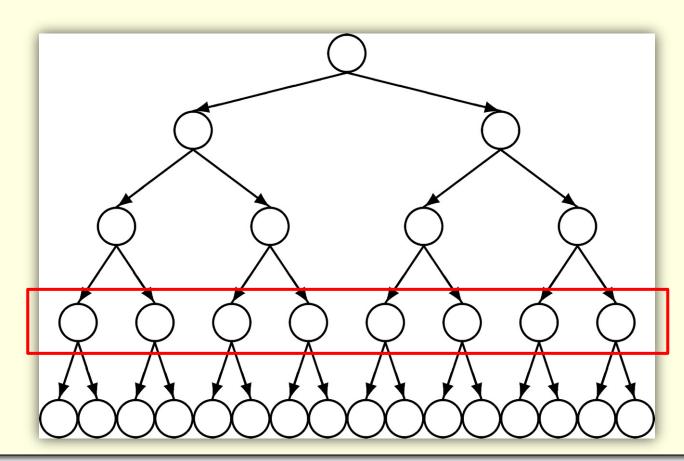
They are already at the bottom most level.



- Building a Heap from scratch
 - Running time:
 - Note:
 - Realize that for any given complete tree, that is completely filled, the lowest level has ½ of the total nodes in a tree
 - In a complete tree of 31 nodes, the lowest level has 16 nodes
 - And since they are already at the lowest level,
 - Those 16 nodes will NOT need to Percolate Down
 - The level above the 16 nodes has 8 nodes
 - What can we say about those 8 nodes?
 - Notice that, at MOST, those 8 nodes will have to Percolate Down only one level

Building a Heap from scratch

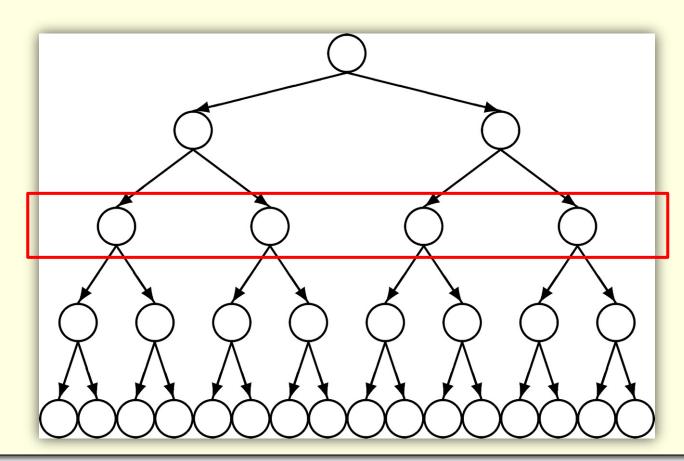
These nodes only have to Percolate Down one level.



- Building a Heap from scratch
 - Running time:
 - Note:
 - Realize that for any given complete tree, that is completely filled, the lowest level has ½ of the total nodes in a tree
 - In a complete tree of 31 nodes, the lowest level has 16 nodes
 - And since they are already at the lowest level,
 - Those 16 nodes will NOT need to Percolate Down
 - The level above the 16 nodes has 8 nodes
 - What can we say about those 8 nodes?
 - Notice that, at MOST, those 8 nodes will have to Percolate Down only one level
 - And the level above the 8 nodes has 4 nodes
 - Those 4 nodes, at most, percolate down 2 levels, etc, etc.

Building a Heap from scratch

These nodes only have to Percolate Down two levels.



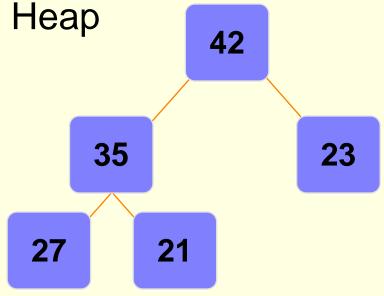
- Building a Heap from scratch
 - Running time:
 - So only ½ of the nodes in a tree may need to be percolated down one level or more
 - Only ½ of those (1/4 of the total) may have to be percolated down two or more levels
 - Only ½ of those (1/8 of the total) may have to be percolated down three or more levels, etc., etc.
 - So if we add up the total number of swaps, we get:
 - (1/2)*n + (1/4)*n + (1/8)*n + ... ≈ n
 - So this Heapify function runs in O(n) time

- Implementing a Binary Heap
 - Remember:
 - a binary heap is a complete binary tree
 - So we can implement this binary tree as an array!
 - How?
 - If a tree is "complete",
 - The root would be the 1st position of the array (index 1)
 - The two children of the node would be in index 2 and 3
 - The 4 nodes on the next level would be in index 4 7
 - The 8 nodes on the next level would be in index 8 15
 - and so on

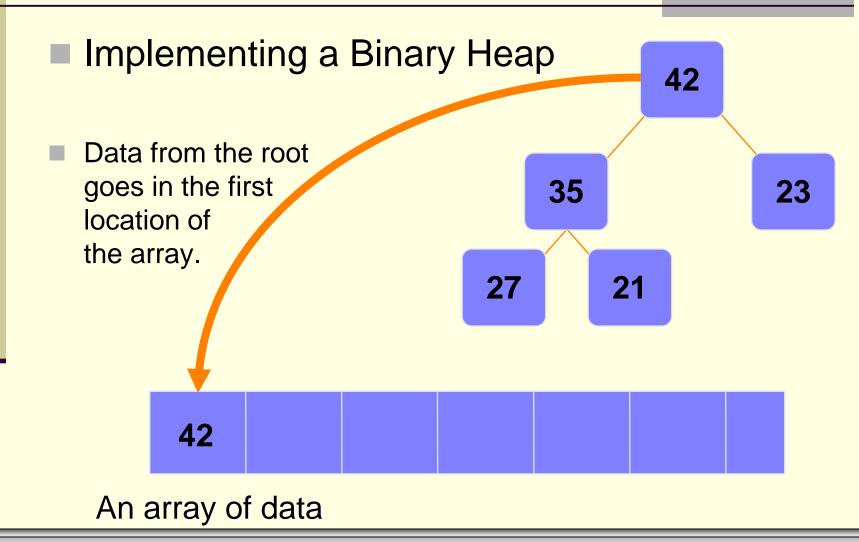
- Implementing a Binary Heap
 - Notes:
 - So we are wanting to implement one ADT
 - A Priority Queue
 - To do so, we utilize another ADT
 - A Heap
 - And to implement the actual Heap, which, in turn, implements the Priority Queue
 - We use an array!
 - So after all of this, we simply use an array
 - And the way we dereference the array and manipulate the data is what makes "the array a tree"

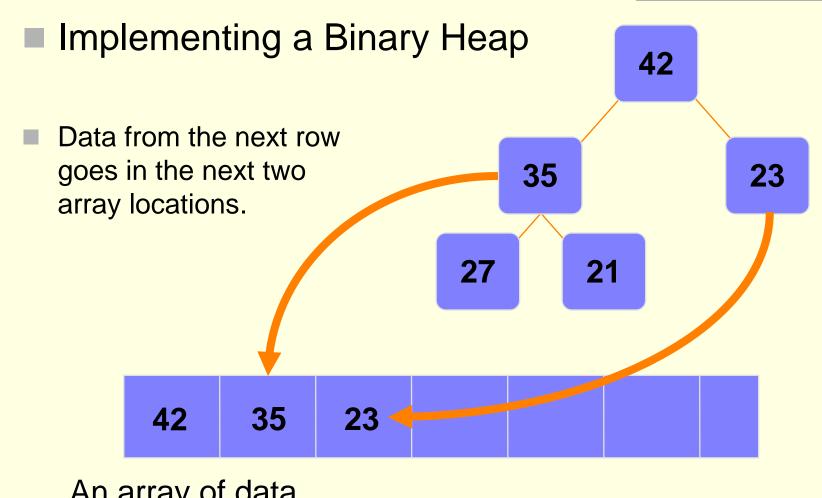
Implementing a Binary Heap

We store the data from the nodes in a partially-filled array.

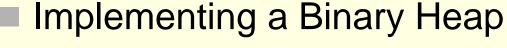


An array of data



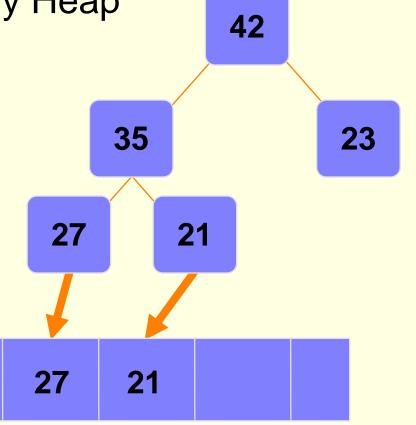


An array of data



35

- And now the next level, or next four nodes of the tree, would go into the array
- We only have two nodes

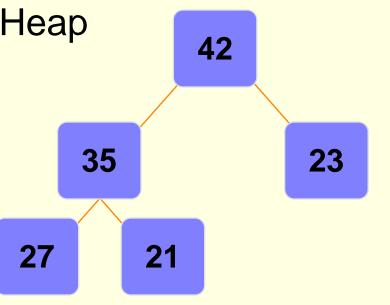


An array of data

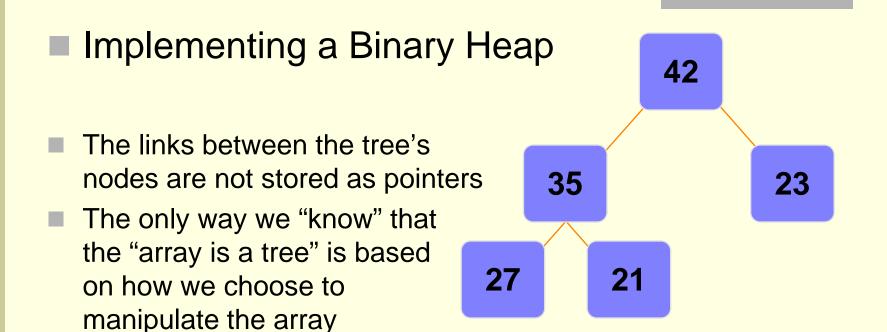
42

23

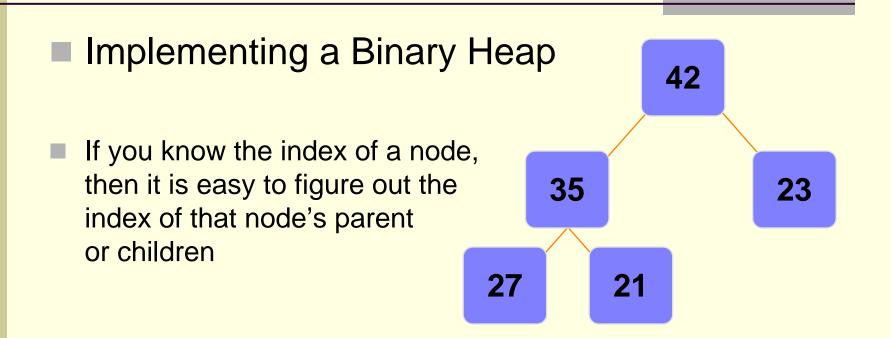
- Implementing a Binary Heap
- We are only concerned with the front part of the array
- If the tree has 5 nodes, then we only care about the first five spots of the array

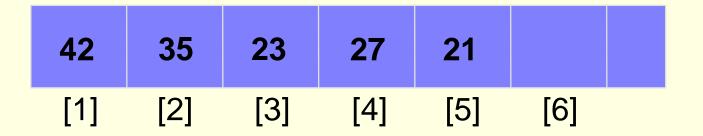


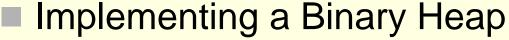
We don't care what's in this part of the array.



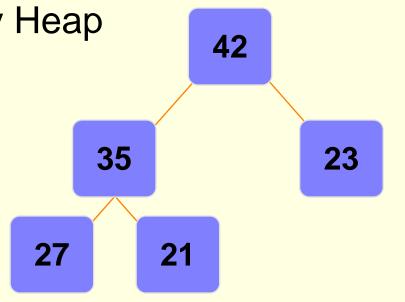
An array of data

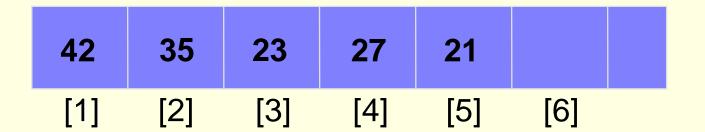




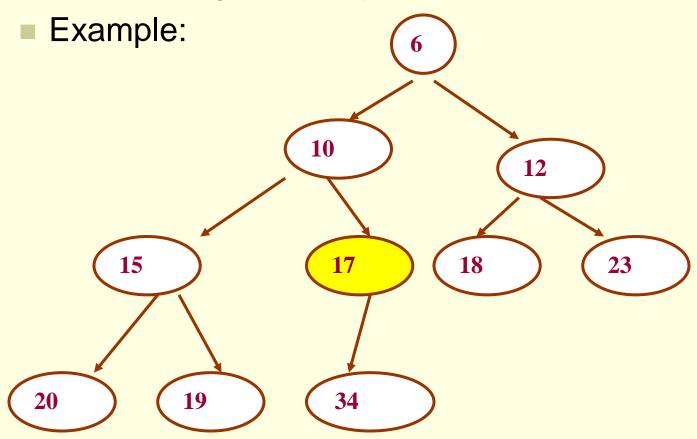


- The name of our array is A[]
- Root is at position A[1]
- Left child of A[i] = A[2i]
- Right child of A[i] = A[2i+1]
- Parent of A[i] = A[i/2]

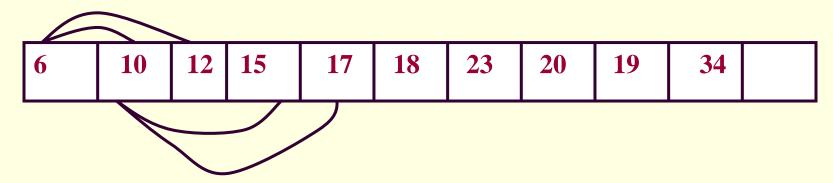




Implementing a Binary Heap



- Implementing a Binary Heap
 - Example:



- Consider node 17:
 - Position in the array: 5
 - It's parent is 10, and is located at position [5/2] = 2
 - 17's left child is node 34, and located at position 5*2 = 10
 - 17 has no right child. Position (2*5 + 1) = 11 (empty)

- Heapsort
 - We can use heaps to sort our data
 - Here's the algorithm:
 - Build a heap with all the n items
 - Takes O(n) time
 - Extract the minimum item (if a Min-heap)
 - O(1)
 - Fix the heap after extraction
 - O(logn)
 - Perform this extraction n times for all the elements
 - Store these removed items, sequentially, in an array
 - Running time: O(nlogn)

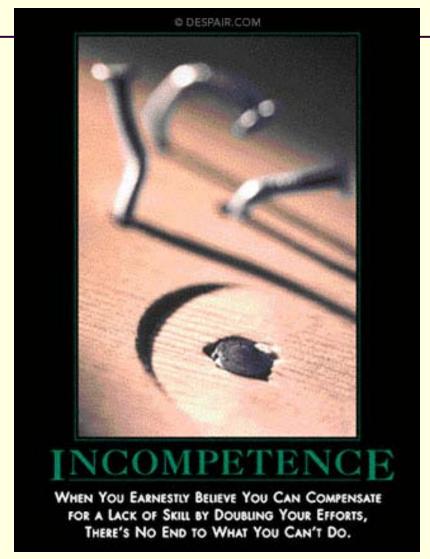
Summary:

- A binary heap is a tree that satisfies 2 properties:
 - The Heap Property
 - Max-heap or Min-heap
 - The Shape Property
 - Must be a complete binary tree
- To add elements to a heap
 - Place element at next available spot and Percolate Up
- To remove elements from a heap,
 - Delete root, as it is always the one you want to remove
 - Then copy last element to root's position
 - Finally, Percolate Down

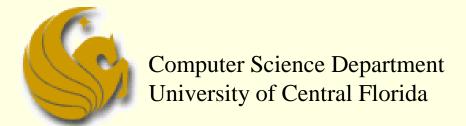
Binary Heaps & Priority Queues

WASN'T THAT PRODIGIOUS!

Daily Demotivator



Heaps & Priority Queues



COP 3502 - Computer Science I