
Computer Science Department
University of Central Florida

Linear Search
vs

Binary Search

COP 3502 – Computer Science I



Linear Search vs Binary Search page 2

Linear Search

 Searching from C-Programming class
 In COP 3223, we studied how to find a value in 

an array
 Look at each value in the array

 Compare it to what we’re looking for
 If we see the value we are searching for,

 Return that we’ve found it!
 Otherwise, if we’ve iterated through the entire array 

and haven’t located the value,
 Return that the value isn’t in the array



Linear Search vs Binary Search page 3

Linear Search

 Searching from C-Programming class
 Your code should look something like this:

int search(int array[], int len, int value) {

int i;
for (i=0; i<len; i++) {

if (array[i] == value)
return 1;

}
return 0;

}



Linear Search vs Binary Search page 4

Linear Search

 Searching from C-Programming class
 Analyze code:

 Clearly, if the array is unsorted, this algorithm is 
optimal
 They ONLY way to be sure that a value isn’t in the array is 

to look at every single spot of the array
 Just like you can’t be sure that you DON’T have some 

piece of paper or form unless you look through ALL of your 
pieces of paper

 But we ask a question:
 Could we find an item in an array faster if it were 

already sorted?



Linear Search vs Binary Search page 5

Binary Search

 Number Guessing Game from childhood
 Remember the game you most likely played as 

a child
 I have a secret number between 1 and 100.
 Make a guess and I’ll tell you whether your guess is 

too high or too low.
 Then you guess again.  The process continues until 

you guess the correct number.
 Your job is to MINIMIZE the number of guesses you 

make.



Linear Search vs Binary Search page 6

Binary Search

 Number Guessing Game from childhood
 What is the first guess of most people?

 50.

 Why?
 No matter the response (too high or too low), the most 

number of possible values for your remaining search 
is 50 (either from 1-49 or 51-100)

 Any other first guess results in the risk that the 
possible remaining values is greater than 50.
 Example:  you guess 75
 I respond:  too high
 So now you have to guess between 1 and 74

 74 values to guess from instead of 50



Linear Search vs Binary Search page 7

Binary Search

 Number Guessing Game from childhood
 Basic Winning Strategy

 Always guess the number that is halfway between the 
lowest possible value in your search range and the 
highest possible value in your search range

 Can we now adapt this idea to work for 
searching for a given value in an array?



Linear Search vs Binary Search page 8

Binary Search

 Array Search
 We are given the following sorted array:

 We are searching for the value, 19
 So where is halfway between?

 One guess would be to look at 2 and 118 and take 
their average (60).

 But 60 isn’t even in the list 
 And if we look at the number closest to 60

 It is almost at the end of the array

index 0 1 2 3 4 5 6 7 8
value 2 6 19 27 33 37 38 41 118



Linear Search vs Binary Search page 9

Binary Search

 Array Search
 We quickly realize that if we want to adapt the 

number guessing game strategy to searching an 
array, we MUST search in the middle INDEX of 
the array.

 In this case:
 The lowest index is 0
 The highest index is 8
 So the middle index is 4



Linear Search vs Binary Search page 10

Binary Search

 Array Search
 Correct Strategy

 We would ask, “is the number I am searching for, 19, 
greater or less than the number stored in index 4?
 Index 4 stores 33

 The answer would be “less than”
 So we would modify our search range to in between 

index 0 and index 3
 Note that index 4 is no longer in the search space

 We then continue this process
 The second index we’d look at is index 1, since (0+3)/2=1
 Then we’d finally get to index 2, since (2+3)/2 = 2
 And at index 2, we would find the value, 19, in the array



Linear Search vs Binary Search page 11

Binary Search

 Binary Search code:
int binsearch(int a[], int len, int value) {

int low = 0, high = len-1;
while (low <= high) {

int mid = (low+high)/2;
if (value < a[mid])

high = mid-1;
else if (value > a[mid])

low = mid+1;
else

return 1;
}

return 0;
}



Linear Search vs Binary Search page 12

Binary Search

 Binary Search code:

 At the end of each array iteration, all we do is 
update either low or high

 This modifies our search region
 Essentially halving it



Linear Search vs Binary Search page 13

Binary Search

 Efficiency of Binary Search
 Analysis:

 Let’s analyze how many comparisons (guesses) are 
necessary when running this algorithm on an array of 
n items
First, let’s try n = 100
 After 1 guess, we have 50 items left,
 After 2 guesses, we have 25 items left,
 After 3 guesses, we have 12 items left,
 After 4 guesses, we have 6 items left,
 After 5 guesses, we have 3 items left,
 After 6 guesses, we have 1 item left
 After 7 guesses, we have 0 items left.



Linear Search vs Binary Search page 14

Binary Search

 Efficiency of Binary Search
 Analysis:

 Notes:
 The reason for the last iteration is because the number of 

items left represent the number of other possible values to 
search
 We need to reduce this to 0.

 Also, when n is odd, such as when n=25
 We search the middle element, # 13
 There are 12 elements smaller than 13
 And 12 elements bigger than 13
 This is why the number of items is slightly less than ½ in 

those cases



Linear Search vs Binary Search page 15

Binary Search

 Efficiency of Binary Search
 Analysis:

 General case:

 After 1 guess, we have n/2 items left
 After 2 guesses, we have n/4 items left
 After 3 guesses, we have n/8 items left
 After 4 guesses, we have n/16 items left
 …
 After k guesses, we have n/2k items left



Linear Search vs Binary Search page 16

Binary Search

 Efficiency of Binary Search
 Analysis:

 General case:
 So, after k guesses, we have n/2k items left
 The question is:

 How many k guesses do we need to make in order to find 
our answer?

 Or until we have one and only one guess left to make?
 So we want to get only 1 item left
 If we can find the value that makes the above fraction 

equal to 1, then we know that in one more guess, we’ll 
narrow down the item



Linear Search vs Binary Search page 17

Binary Search

 Efficiency of Binary Search
 Analysis:

 General case:
 So, after k guesses, we have n/2k items left

 Again, we want only 1 item left
 So set this equal to 1 and solve for k

 This means that a binary search roughly takes log2n 
comparisons when searching in a sorted array of n 
items

1
2

=k

n kn 2= nk 2log=



Linear Search vs Binary Search page 18

Binary Search

 Efficiency of Binary Search
 Analysis:

 Runs in logarithmic (log n) time
 This is MUCH faster than searching linearly
 Consider the following chart:

 Basically, any log n algorithm is SUPER FAST.

n log n
8 3

1024 10
65536 16

1048576 20
33554432 25

1073741824 30



Computer Science Department
University of Central Florida

Linear Search
vs

Binary Search

COP 3502 – Computer Science I


	Linear Search�vs�Binary Search
	Linear Search
	Linear Search
	Linear Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Linear Search�vs�Binary Search

