Linear Search vs Binary Search

Computer Science Department University of Central Florida

COP 3502 – Computer Science I

Linear Search

- Searching from C-Programming class
	- **If a In COP 3223, we studied how to find a value in** an array
		- **Look at each value in the array**
			- **Compare it to what we're looking for**
		- If we see the value we are searching for,
			- Return that we've found it!
		- Otherwise, if we've iterated through the entire array and haven't located the value,
			- **Return that the value isn't in the array**

Linear Search

}

■ Searching from C-Programming class ■ Your code should look something like this:

```
int search(int array[], int len, int value) {
```

```
int i;
for (i=0; i<len; i++) {
        if (\text{array}[i] == \text{value})return 1;
}
return 0;
```
Linear Search

Searching from C-Programming class

- **Analyze code:**
	- **Clearly, if the array is unsorted, this algorithm is** optimal
		- They ONLY way to be sure that a value isn't in the array is to look at every single spot of the array
		- Just like you can't be sure that you DON'T have some piece of paper or form unless you look through ALL of your pieces of paper

But we ask a question:

Could we find an item in an array faster if it were already sorted?

- **Number Guessing Game from childhood**
	- **Remember the game you most likely played as** a child
		- **I** have a secret number between 1 and 100.
		- **Make a guess and I'll tell you whether your guess is** too high or too low.
		- **Then you guess again. The process continues until** you guess the correct number.
		- **Your job is to MINIMIZE the number of guesses you** make.

- Number Guessing Game from childhood
	- **Not is the first guess of most people?**
		- 50.
	- Why?
		- No matter the response (too high or too low), the most number of possible values for your remaining search is 50 (either from 1-49 or 51-100)
		- **Any other first guess results in the risk that the** possible remaining values is greater than 50.
			- Example: you guess 75
			- I respond: too high
			- So now you have to guess between 1 and 74
				- 74 values to guess from instead of 50

Number Guessing Game from childhood

- **Basic Winning Strategy**
	- **Always guess the number that is halfway between the** lowest possible value in your search range and the highest possible value in your search range

■ Can we now adapt this idea to work for searching for a given value in an array?

Array Search

■ We are given the following sorted array:

- We are searching for the value, 19
- So where is halfway between?
	- One guess would be to look at 2 and 118 and take their average (60).
	- **But 60 isn't even in the list**
	- **And if we look at the number closest to 60**
		- If is almost at the end of the array

E Array Search

- We quickly realize that if we want to adapt the number guessing game strategy to searching an array, we MUST search in the middle INDEX of the array.
- In this case:
	- The lowest index is 0
	- The highest index is 8
	- So the middle index is 4

E Array Search

- Correct Strategy
	- We would ask, "is the number I am searching for, 19, greater or less than the number stored in index 4?
		- lindex 4 stores 33
	- **The answer would be "less than"**
	- So we would modify our search range to in between index 0 and index 3
		- Note that index 4 is no longer in the search space
	- We then continue this process
		- The second index we'd look at is index 1, since (0+3)/2=1
		- Then we'd finally get to index 2, since $(2+3)/2 = 2$
		- And at index 2, we would find the value, 19, in the array

}

Binary Search code:

```
int binsearch(int a[], int len, int value) {
       int low = 0, high = len-1;
      while (low \le high) {
             int mid = (low+high)/2;if (value < a[mid])
                    high = mid-1;
             else if (value > a[mid])
                    low = mid+1;else
                    return 1;
       }
      return 0;
```


- Binary Search code:
	- At the end of each array iteration, all we do is update either low or high
	- **This modifies our search region**
		- **Essentially halving it**

Efficiency of Binary Search

Analysis:

Let's analyze how many comparisons (guesses) are necessary when running this algorithm on an array of n items

First, let's try $n = 100$

- **After 1 guess, we have 50 items left,**
- After 2 guesses, we have 25 items left,
- After 3 guesses, we have 12 items left,
- After 4 guesses, we have 6 items left,
- After 5 guesses, we have 3 items left,
- After 6 guesses, we have 1 item left
- After 7 guesses, we have 0 items left.

Efficiency of Binary Search

Analysis:

- Notes:
	- **The reason for the last iteration is because the number of** items left represent the number of other possible values to search
		- We need to reduce this to 0.
	- Also, when n is odd, such as when n=25
		- **We search the middle element,** $# 13$
		- There are 12 elements smaller than 13
		- And 12 elements bigger than 13
		- **This is why the number of items is slightly less than** $\frac{1}{2}$ **in** those cases

- Efficiency of Binary Search
	- **Analysis:**
		- General case:
		- **After 1 guess, we have n/2 items left**
		- **After 2 guesses, we have n/4 items left**
		- **After 3 guesses, we have n/8 items left**
		- **After 4 guesses, we have n/16 items left**
		- …
		- After k guesses, we have $n/2^k$ items left

Efficiency of Binary Search

Analysis:

- General case:
- So, after k guesses, we have n/2^k items left
- The question is:
	- How many k guesses do we need to make in order to find our answer?
	- **Or until we have one and only one guess left to make?**
- So we want to get only 1 item left
- \blacksquare If we can find the value that makes the above fraction equal to 1, then we know that in one more guess, we'll narrow down the item

Efficiency of Binary Search

Analysis:

- General case:
- So, after k guesses, we have $n/2^k$ items left
	- **Again, we want only 1 item left**
	- **So set this equal to 1 and solve for k**

$$
\frac{n}{2^k} = 1 \qquad \qquad n = 2^k \qquad \qquad k = \log_2 n
$$

This means that a binary search roughly takes log₂n comparisons when searching in a sorted array of n items

Efficiency of Binary Search

- **Analysis:**
	- Runs in logarithmic (log n) time
	- This is MUCH faster than searching linearly
	- Consider the following chart:

Basically, any log n algorithm is SUPER FAST.

Linear Search vs Binary Search *page 18*

Linear Search vs Binary Search

Computer Science Department University of Central Florida

COP 3502 – Computer Science I