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Motivation for AVL Trees

 Recall the basics of Binary Search Trees
 The goal of a BST is to provide O(log n) lookup, 

insertion, deletion, etc.
 However, this goal is only accomplished on a 

“complete” binary tree
 a tree where all levels are filled with the possible 

exception of the last level, which is filled from left to right
 Given a complete BST, the height of the tree is 

approximately log n, where n is the number of nodes

 Remember:
 If a BST is not complete, the height is NOT necessarily 

logn
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Motivation for AVL Trees

 Recall the basics of Binary Search Trees
 The height of a BST depends on the order of 

insertion
 Example:

 Inserting values 1, 2, 3, 4, 5, 6, and 7 into an initially 
empty BST results in what?

 Each new values ends up going to the “right” of the 
previous value

 So we end up with a completely right-skewed tree
 This “tree” has degenerated into a linked list with respect 

to the running time of operations
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Motivation for AVL Trees

 Recall the basics of Binary Search Trees

(a) An unbalanced BST

(b) A balanced BST
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Motivation for AVL Trees

 This “tree” is just a 
linked list in binary 
tree clothing.

 It takes 2 tests to 
locate 12, 3 to locate 
14, and 8 to locate 52.

 Hence, the search 
effort for this binary 
tree is O(n).
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Motivation for AVL Trees

 Balanced BST
 We want to maintain balance in our BSTs
 Is there a way, regardless of the insertion order of 

elements, to maintain this balance?
 To guarantee a height of log(n)?

 Basically, can we keep this balance?
 Short answer:  yes!
 AVL Trees:

 G.M. Adelson-Velskii and E.M. Landis
 Published their algorithm in 1962 in a paper entitled

"An algorithm for the organization of information."
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AVL Trees

 AVL Tree
 Definition:

 An AVL tree is a BST in which the heights of the subtrees, 
of any given node, differ by no more than 1

 For EVERY node in a BST, you must check the height of 
the left and right subtree of that node

 If the height of those subtrees differ by no more than 1, 
then that BST is an AVL tree

 Thus, an AVL tree is a balanced BST
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AVL Trees

 AVL Tree
 This BST is an AVL tree.
 It takes 2 tests to locate 

18, 3 to locate 12, and 4 
to locate 8.

 Hence, the search effort 
for this binary tree is 
O(log2n).
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AVL Trees

 AVL Tree
 For a tree with 1000 nodes, the worst case for a 

completely unbalanced tree is 1000 tests.
 Again, degenerating to a linked list

 However, the worst case for a balanced tree is 10 
tests.
 HUUUUUGE difference

 Hence, balancing a tree can lead to significant 
improvements.
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AVL Trees

 AVL Trees:  Formal Definition
1) All empty trees are also, by definition, AVL trees
2) If T is a non-empty BST with TL and TR as its left 

and right subtrees, respectively, then T is an AVL 
tree if and only if:
1) TL and TR are also AVL trees
2) |hL – hR| <= 1

 where hL and hR are the heights of TL and TR, respectively

TL TR
hL hL + 1 or hL - 1
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AVL Trees

 AVL Tree
 AVL trees are height-balanced BSTs
 All nodes in an AVL tree have a 

Balance Factor (BF)
 Balance factor of a node = height of 

the left subtree minus the height of 
the right subtree
 BF = hL – hR
 or BF = hR – hL

 An AVL tree can have only
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are Balance Factors

An AVL Tree

balance factors of -1, 0, or 1 at every node
 For every node in a BST, the height of the left and right 

subtrees can differ by no more than 1
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AVL Trees

 AVL Trees:  Examples

Red numbers are Balance Factors
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AVL Trees

 Skewed AVL Trees
 Notice that the definition of an AVL tree does NOT 

require that all leaf nodes be on the same level or 
even adjacent levels
 As such, it is possible to construct AVL trees that are quite 

skewed as shown below:
1
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0 0
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AVL Trees

 AVL Trees:  Implementation
 To implement an AVL tree, simply associated a BF 

with each node, “x”

 x->bf = hL - hR

 Again, in an AVL-tree, BF can be one of {-1, 0, 1}

left right
data

BF

x
struct AVLTreeNode{

int data;
int BF;
struct AVLTreeNode *left;
struct AVLTreeNode *right;

};
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AVL Trees

 AVL Trees:  Good News & Bad News
 Good News

 Search is O(log n) = O(height)

 Bad News
 Insert and delete may cause the tree to be unbalanced
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AVL Trees

 Insertion into an AVL Tree
 Insertion into an AVL tree is just like inserting into a 

standard BST
 You simply do a search, going left or right at every step, in 

the tree until you find the correct leaf node
 You then insert in either the left or right child of that node

 Once the new node is inserted, the balance MUST 
be checked and restored if the tree has become 
unbalanced
 It often turns out that the new node can be inserted 

without affecting the height of the subtree
 If this happens, then the balance of the root will not change
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AVL Trees

 Insertion into an AVL Tree
 Once the new node is inserted, the balance MUST 

be checked and restored if the tree has become 
unbalanced
 Even if the insertion caused one of the subtrees to 

increase in height, it may be that the shorter of the 
subtrees changed in height.
 So only the balance factor of the root will change

 The only case that causes difficulty:
 Inserting a new node into a subtree of the root, which is 

taller than the other subtree, and the height of the taller 
subtree increases

 So one subtree will have a height 2 more than the other
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AVL Trees

 Insertion into an AVL Tree
 Thus, an AVL tree can become unbalanced due to 

an insertion in one of four ways:
 (two of which are symmetric to the others)
1) Inserting a new node into the right subtree of a right child
2) Inserting a new node into the left subtree of a left child

 This is the symmetric case
3) Inserting a new node into the left subtree of a right child
4) Inserting a new node into the right subtree of a left child

 This is the symmetric case
 The first two cases are easier to handle (as the require 

only one rotation), so we will go over them first
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AVL Trees

 Restoring Balance in an AVL Tree
 Problem

 Inserting a new node may cause the BF of some node, on 
the path from the root to the insertion point, to become 2 
or -2

 Solution:
 First insert the node following typical rules of a BST
 Then, from that insertion point, BACK UP towards the 

root, updating the BFs of all nodes along the path to root
 If a node ends up with a BF of 2 or -2, you must adjust the 

tree by rotating around deepest such node
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AVL Trees

 Restoring Balance in an AVL Tree
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AVL Trees

 Four Cases of Imbalance:  LL Imbalance

Red values are balance factors
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AVL Trees

 Four Cases of Imbalance:  RR Imbalance

Red values are balance factors

Node around which rotation will be performed

Tree before Insertion
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AVL Trees

 Four Cases of Imbalance:  LR Imbalance

Red values are balance factors

Node around which rotation will be performed
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AVL Trees

 Four Cases of Imbalance:  RL Imbalance

Red values are balance factors

Node around which rotation will be performed

Tree before Insertion

0

0

0

-1

0 00

0 0

Tree after Insertion

0

0

-2

0 10

-1 0

0



AVL Trees:  Insertion page 25

AVL Trees

 AVL Balance Factor:
 An LH tree is a tree in which the left subtree has a 

height greater than the right subtree.
 An RH tree is a tree in which the right subtree has a 

height greater than the left subtree.
 An EH tree is a tree in which the left and right 

subtrees have the same height.
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AVL Trees

 AVL Balance
Factor:

HL= 2

HL=1

HR= 1

HR= 0 HL=-1 HR= 0
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AVL Trees

 Balancing AVL Trees:
 Whenever we insert a node into a tree or delete a 

node from a tree, the resulting tree may become 
unbalanced.

 When we detect that a tree has become 
unbalanced, we must rebalance it.

 AVL trees are balanced by rotating nodes either to 
the left or to the right.
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AVL Trees

 Balancing AVL Trees:
 We consider four cases that require rebalancing 

(previously shown):
 Left of left
 Right of right 
 Right of left
 Left of right

 Note that the first “Left” or “Right” refers to a 
subtree

 the second “Left” or “Right” refers to the whole tree
 this will make sense in a minute
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AVL Trees

 Balancing AVL Trees:  Left of Left

 In this case, a tree that is left high (2nd left) has a 
subtree that has become left high (1st left).

 Here we see that the tree is left high to start
 look at 18

 After inserting 4, node 12 goes from EH to LH.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 In this case, a tree that is right high (2nd right) has a 
subtree that has become right high (1st right).

 Here we see that the tree is right high to start
 look at 14

 After inserting 44, node 20 goes from EH to RH.
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AVL Trees

 Balancing AVL Trees:  Right of Left

 In this case a tree that is left high has a subtree that 
has become right high.

 Here we see that the tree is left high to start
 look at 18

 After inserting 13, node 12 goes from EH to RH.
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AVL Trees

 Balancing AVL Trees:  Left of Right

 In this case a tree that is right high has a subtree
that has become left high.

 Here we see that the tree is right high to start
 look at 14

 After inserting 19, node 20 goes from EH to LH.
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AVL Trees

 Balancing AVL Trees:  Left of Left

 When the out-of-balance condition has been 
created by a left-high subtree of a left-high tree,

 we must balance the tree by rotating the out-of-
balance node to the right.
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AVL Trees

 Balancing AVL Trees:  Left of Left

 After inserting 12, 
node 20 becomes 
unbalanced (LH).

 We must then 
rotate the 
unbalanced node, 
20, to the right.
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AVL Trees

 Balancing AVL Trees:  Left of Left

 After inserting 4, 
node 18 becomes 
unbalanced (LH).

 Hence, we need 
to rotate 18 to the 
right.

 This makes 18 
the right subtree
of the new root, 
12.
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AVL Trees

 Balancing AVL Trees:  Left of Left

 This creates a 
problem, though.

 What do we do 
with the current 
right subtree of 12 
(i.e., 14)?
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AVL Trees

 Balancing AVL Trees:  Left of Left

 In the process of 
being rotated to 
the right, node 18 
lost its left 
subtree.

 Hence, we can 
use the left 
subtree of 18 to 
attach 14 to.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 When the out-of-balance condition has been 
created by a right-high subtree of a right-high tree,

 we must balance the tree by rotating the out-of-
balance node to the left.

 This is simply the “mirror” of the left-of-left case.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 After inserting 20, 
node 12 becomes 
unbalanced (RH).

 We must then 
rotate the 
unbalanced node, 
12, to the left.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 After inserting 44, 
node 14 becomes 
unbalanced (RH).

 Hence, we need 
to rotate the 
unbalanced node, 
14, to the left.

 This makes 14 
the left subtree of 
the new root, 20.
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AVL Trees

 Balancing AVL Trees:  Right of Right

 This creates a 
problem, though.

 What do we do 
with the current 
left subtree of 20 
(i.e., 18)?
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AVL Trees

 Balancing AVL Trees:  Right of Right

 In the process of 
being rotated to 
the left, node 14 
lost its right 
subtree.

 Hence, we can 
use the right 
subtree of 14 to 
attach 18 to.
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Brief Interlude:  FAIL Picture
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AVL Trees

 Balancing AVL Trees:
 Right of Left     &     Left of Right

 The first two cases only required single rotations to 
balance the trees.

 We now study two out-of-balance conditions in 
which we need to rotate two nodes, one to the left 
and one to the right, to balance the tree.
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AVL Trees

 Balancing AVL Trees:  Right of Left

 When the out-of-balance condition has been 
created by a right-high subtree of a left-high tree,

 we must balance the tree by performing TWO 
rotations
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AVL Trees

 Balancing AVL Trees:  Right of Left

 To balance the tree, we 
first rotate the left 
subtree, 4, of the out-of-
balance node, 12, to the 
left.

 This will create a left-of-
left situation.

 We then rotate the the
unbalanced node to the 
right to balance the tree.
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AVL Trees

 Balancing AVL Trees:  Right of Left

 This is a slightly more 
complex problem.

 After inserting 16,
node 18 becomes 
unbalanced.

 Hence, we need to 
rotate the left subtree, 
12, of the unbalanced 
node, 18, to the left.
 shown at (b2)
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AVL Trees

 Balancing AVL Trees:  Right of Left

 This will create a left-of-
left situation.
 (b2)

 We then rotate the the
out-of-balance node, 
18, to the right to 
balance the tree.
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AVL Trees

 Balancing AVL Trees:  Left of Right

 When the out-of-balance condition has been 
created by a right-high subtree of a left-high tree,

 we must balance the tree by performing TWO 
rotations
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AVL Trees
 Balancing AVL Trees:  Left of Right

 To balance the tree we 
first rotate the right 
subtree, 44, of the out 
of balance node, 12, to 
the right.

 This will create a right-
of-right situation.

 We then rotate the the
unbalanced node to the 
left to balance the tree.
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AVL Trees
 Balancing AVL Trees:  Left of Right

 This is a slightly more 
complex problem.

 After inserting 20,
node 18 becomes 
unbalanced.

 Hence, we need to 
rotate the right subtree, 
44, of the unbalanced 
node, 18, to the right.
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AVL Trees
 Balancing AVL Trees:  Left of Right

 This will create a right-
of-right situation.

 We then rotate the the
out-of-balance node, 
18, to the left to balance 
the tree.
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AVL Trees

 Insertion into AVL Trees (Summary)
 We insert following standard rules of a BST
 Then we trace back up to the root of the tree
 As we back out of the tree, constantly check the 

balance factor of each node
 When a node is out of balance, we balance it and 

continue backing up out of the tree
 Note:

 Not all inserts will produce an out of balance tree
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AVL Trees

 Summary of AVL Trees:
 Arguments for using AVL trees:

1) Search/insertion/deletion is O(log N) since AVL trees 
are always balanced.

2) The height balancing adds no more than a constant 
factor to the speed of insertion. 

 Arguments against using AVL trees:
1) Requires extra space for balancing factor
2) It may be OK to have a partially balanced tree that 

would give performance similar to AVL trees without 
requiring the balancing factor
 Splay trees (something we won’t be covering in CS1)
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AVL Trees:  Insertion

WASN’T
THAT

TITILLATING!
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Daily Demotivator
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