
Computer Science Department
University of Central Florida

Backtracking

COP 3502 – Computer Science I

Backtracking page 2

Preliminaries

 Exhaustive Search
 What is an exhaustive search?

 a trivial but very general problem-solving technique that
consists of:

1) systematically enumerating all possible candidates for
the solution, and

2) checking whether each candidate satisfies the
problem's statement

 aka “brute-force” search

 Brute-force is simple to implement
 And given enough time, it will always find a

solution

Backtracking page 3

Preliminaries

 Exhaustive Search
 Example:

 Let’s say you want to find all the possible divisors of
some natural number, n.

 The exhaustive, brute-force approach would be to
enumerate ALL integers from 1 to n

 and then check whether each of them divides n without
any remainder

 Think of brute-force as searching without a brain
 Example 2:

 A brute-force search of a node in a BST would ignore the
ordering property and, instead, would search EACH and
every single node

Backtracking page 4

Preliminaries

 Exhaustive Search
 Benefit of Brute-Force:

 You are guaranteed to find a solution
 Since your algorithm will ultimately try EACH AND

EVERY possible candidate solution, you will find the real
solution

 Negative of Brute-Force:
 It takes a LOOOOOOOONG time.
 Sure, your algorithm, in theory, will produce a solution
 But most likely not in your lifetime!
 Even for average size values of n, the running time is

often computationally prohibitive.

Backtracking page 5

Backtracking

 What is backtracking?
 Often no more than a clever implementation of an

exhaustive search
 BUT, the savings over a brute force algorithm can

be significant
 Backtracking could degenerate, in a worst case, to

a brute force, exhaustive search
 But in most cases, better cases, backtracking

only checks a subset of possibilities within the
search.

Backtracking page 6

Backtracking

 Simple example:
 Arrange furniture in the house
 An exhaustive search:

 Would find ALL POSSIBLE furniture arrangements and
check to see if one fits in the house

 This is WAAAAAAY crazy
 Computationally prohibitive!!!

 Backtracking:
 Place one piece of furniture in the room
 Then try the second and the third, and so on
 If they all fit, then great
 If not, remove the last piece, and continue trying

Backtracking page 7

Backtracking

 Simple example:
 Arrange furniture in the house
 Backtracking:

 In a worst case, this could result in another undo, and
then another, and so forth.
 And we could end up trying all possibilities

 But realistically, we will terminate before then with a
satisfactory arrangement

 So we can call this a “smart brute force”
 We try arrangements in a smart way
 And we could possibly, in the worst case, have to check all

possible arrangements

Backtracking page 8

Backtracking

 Simple example:
 Arrange furniture in the house
 Backtracking:

 But notice:
 Not all arrangements are made.
 Sofas are never attempted to be placed in the kitchen, for

example
 Other bad arrangements are discarded

 This elimination of bad arrangements, from the outset, is
known as PRUNING.

 We prune the search space, resulting in less possibilities
to check.

 …another example…

Backtracking page 9

The N-Queens Problem

 Suppose you have 8
chess queens...

 ...and a chess board

Backtracking page 10

The N-Queens Problem

Can the queens be
placed on the board
so that no two
queens are attacking
each other ?

Backtracking page 11

The N-Queens Problem

Two queens are not
allowed in the same
row...

Backtracking page 12

The N-Queens Problem

Two queens are not
allowed in the same
row, or in the same
column...

Backtracking page 13

The N-Queens Problem

Two queens are not
allowed in the same
row, or in the same
column, or along the
same diagonal.

Backtracking page 14

The N-Queens Problem

The number of
queens, and the size
of the board can vary.

N Queens

N columns

Backtracking page 15

The N-Queens Problem

We will write a
program which tries to
find a way to place N
queens on an N x N
chess board.

Backtracking page 16

Backtracking

 N-Queens Problem:
 So how would we do this?
 These slides are about backtracking, so the

answer is obvious. But for now, you don’t know
what this means exactly.

 So what would you do?

 Exhaustive brute force approach:
 Find all possible arrangements of queens

 4,426,165,368 possible arrangements of 8 queens

 See which ones are legal
 Your CPU will cry…really, it will actually cry.

Backtracking page 17

How the program works

The program
uses a stack to
keep track of
where each
queen is
placed.

Backtracking page 18

How the program works

Each time the
program
decides to
place a queen
on the board,
the position of
the new queen
is stored in a
record which is
placed in the
stack.

ROW 1, COL
1

Backtracking page 19

How the program works

We also have
an integer
variable to
keep track of
how many
rows have
been filled so
far.

ROW 1, COL
1

1 filled

Backtracking page 20

How the program works

Each time we
try to place a
new queen in
the next row,
we start by
placing the
queen in the
first column...

ROW 1, COL
1

1 filled

ROW 2, COL
1

Backtracking page 21

How the program works

...if there is a
conflict with
another queen,
then we shift
the new queen
to the next
column. ROW 1, COL

1

1 filled

ROW 2, COL
2

Backtracking page 22

How the program works

If another
conflict occurs,
the queen is
shifted
rightward
again.

ROW 1, COL
1

1 filled

ROW 2, COL
3

Backtracking page 23

How the program works

When there are
no conflicts, we
stop and add
one to the
value of filled.

ROW 1, COL
1

2 filled

ROW 2, COL
3

Backtracking page 24

How the program works

Let's look at
the third row.
The first
position we try
has a conflict...

ROW 1, COL
1

2 filled

ROW 2, COL
3

ROW 3, COL
1

Backtracking page 25

How the program works

...so we shift to
column 2. But
another conflict
arises...

ROW 1, COL
1

2 filled

ROW 2, COL
3

ROW 3, COL
2

Backtracking page 26

How the program works

...and we shift
to the third
column.
Yet another
conflict arises...

ROW 1, COL
1

2 filled

ROW 2, COL
3

ROW 3, COL
3

Backtracking page 27

How the program works

...and we shift
to column 4.
There's still a
conflict in
column 4, so
we try to shift
rightward
again...

ROW 1, COL
1

2 filled

ROW 2, COL
3

ROW 3, COL
4

Backtracking page 28

How the program works

...but there's
nowhere else
to go.

ROW 1, COL
1

2 filled

ROW 2, COL
3

ROW 3, COL
4

Backtracking page 29

How the program works

When we run out of
room in a row:

 pop the stack,
 reduce filled by 1
 and continue

working on the
previous row. ROW 1, COL

1

1 filled

ROW 2, COL
3

Backtracking page 30

How the program works

Now we
continue
working on row
2, shifting the
queen to the
right.

ROW 1, COL
1

1 filled

ROW 2, COL
4

Backtracking page 31

How the program works

This position
has no
conflicts, so we
can increase
filled by 1, and
move to row 3.

ROW 1, COL
1

2 filled

ROW 2, COL
4

Backtracking page 32

How the program works

In row 3, we
start again at
the first
column.

ROW 1, COL
1

2 filled

ROW 2, COL
4

ROW 3, COL
1

Backtracking page 33

Brief Interlude: FAIL Picture

Backtracking page 34

Pseudocode for N-Queens

 Initialize a stack where we can keep track of
our decisions.

 Place the first queen, pushing its position
onto the stack and setting filled to 0.

 repeat these steps:
 if there are no conflicts with the queens...
 else if there is a conflict and there is room to shift

the current queen rightward...
 else if there is a conflict and there is no room to

shift the current queen rightward...

Backtracking page 35

Pseudocode for N-Queens

 repeat these steps
 if there are no conflicts with the queens...

Increase filled by 1. If filled is now N, then
the algorithm is done. Otherwise, move to

the next row and place a queen in the
first column.

Backtracking page 36

Pseudocode for N-Queens

 repeat these steps
 if there are no conflicts with the queens...
 else if there is a conflict and there is room to shift

the current queen rightward...

Move the current queen rightward,
adjusting the record on top of the stack

to indicate the new position.

Backtracking page 37

Pseudocode for N-Queens

 repeat these steps
 if there are no conflicts with the queens...
 else if there is a conflict and there is room to shift

the current queen rightward...
 else if there is a conflict and there is no room to

shift the current queen rightward...

Backtrack!
Keep popping the stack, and reducing filled
by 1, until you reach a row where the queen

can be shifted rightward. Shift this queen right.

Backtracking page 38

Pseudocode for N-Queens

 repeat these steps
 if there are no conflicts with the queens...
 else if there is a conflict and there is room to shift

the current queen rightward...
 else if there is a conflict and there is no room to

shift the current queen rightward...

Backtrack!
Keep popping the stack, and reducing filled
by 1, until you reach a row where the queen

can be shifted rightward. Shift this queen right.

Backtracking page 39

 Stacks have many applications.
 The application which we have shown is called

backtracking.
 The key to backtracking: Each choice is recorded

in a stack.
 When you run out of choices for the current

decision, you pop the stack, and continue trying
different choices for the previous decision.

 Here’s an applet to see nQueens in action:
 http://www.cosc.canterbury.ac.nz/mukundan/dsal/NQP.html

Summary

http://www.cosc.canterbury.ac.nz/mukundan/dsal/NQP.html�

Backtracking page 40

Backtracking

WASN’T
THAT

CAPTIVATING!

Backtracking page 41

Daily Demotivator

Computer Science Department
University of Central Florida

Backtracking

COP 3502 – Computer Science I

	Backtracking
	Preliminaries
	Preliminaries
	Preliminaries
	Backtracking
	Backtracking
	Backtracking
	Backtracking
	The N-Queens Problem
	The N-Queens Problem
	The N-Queens Problem
	The N-Queens Problem
	The N-Queens Problem
	The N-Queens Problem
	The N-Queens Problem
	Backtracking
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	How the program works
	Brief Interlude: FAIL Picture
	Pseudocode for N-Queens
	Pseudocode for N-Queens
	Pseudocode for N-Queens
	Pseudocode for N-Queens
	Pseudocode for N-Queens
	Summary
	Backtracking
	Daily Demotivator
	Backtracking

