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Preliminaries

 Exhaustive Search
 What is an exhaustive search?

 a trivial but very general problem-solving technique that 
consists of:

1) systematically enumerating all possible candidates for 
the solution, and

2) checking whether each candidate satisfies the 
problem's statement

 aka “brute-force” search

 Brute-force is simple to implement
 And given enough time, it will always find a 

solution
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Preliminaries

 Exhaustive Search
 Example:

 Let’s say you want to find all the possible divisors of 
some natural number, n.

 The exhaustive, brute-force approach would be to 
enumerate ALL integers from 1 to n

 and then check whether each of them divides n without 
any remainder

 Think of brute-force as searching without a brain
 Example 2:

 A brute-force search of a node in a BST would ignore the 
ordering property and, instead, would search EACH and 
every single node
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Preliminaries

 Exhaustive Search
 Benefit of Brute-Force:

 You are guaranteed to find a solution
 Since your algorithm will ultimately try EACH AND 

EVERY possible candidate solution, you will find the real 
solution

 Negative of Brute-Force:
 It takes a LOOOOOOOONG time.
 Sure, your algorithm, in theory, will produce a solution
 But most likely not in your lifetime!
 Even for average size values of n, the running time is 

often computationally prohibitive.
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Backtracking

 What is backtracking?
 Often no more than a clever implementation of an 

exhaustive search
 BUT, the savings over a brute force algorithm can 

be significant
 Backtracking could degenerate, in a worst case, to 

a brute force, exhaustive search
 But in most cases, better cases, backtracking 

only checks a subset of possibilities within the 
search.
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Backtracking

 Simple example:
 Arrange furniture in the house
 An exhaustive search:

 Would find ALL POSSIBLE furniture arrangements and 
check to see if one fits in the house

 This is WAAAAAAY crazy
 Computationally prohibitive!!!

 Backtracking:
 Place one piece of furniture in the room
 Then try the second and the third, and so on
 If they all fit, then great
 If not, remove the last piece, and continue trying
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Backtracking

 Simple example:
 Arrange furniture in the house
 Backtracking:

 In a worst case, this could result in another undo, and 
then another, and so forth.
 And we could end up trying all possibilities

 But realistically, we will terminate before then with a 
satisfactory arrangement

 So we can call this a “smart brute force”
 We try arrangements in a smart way
 And we could possibly, in the worst case, have to check all 

possible arrangements
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Backtracking

 Simple example:
 Arrange furniture in the house
 Backtracking:

 But notice:
 Not all arrangements are made.
 Sofas are never attempted to be placed in the kitchen, for 

example
 Other bad arrangements are discarded

 This elimination of bad arrangements, from the outset, is 
known as PRUNING.

 We prune the search space, resulting in less possibilities 
to check.

 …another example…
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The N-Queens Problem

 Suppose you have 8 
chess queens...

 ...and a chess board
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The N-Queens Problem

Can the queens be 
placed on the board 
so that no two 
queens are attacking 
each other  ?
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The N-Queens Problem

Two queens are not 
allowed in the same 
row...
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The N-Queens Problem

Two queens are not 
allowed in the same  
row, or in the same 
column...
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The N-Queens Problem

Two queens are not 
allowed in the same  
row, or in the same 
column, or along the 
same diagonal.
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The N-Queens Problem

The number of 
queens, and the size 
of the board can vary.

N Queens

N columns
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The N-Queens Problem

We will write a 
program which tries to 
find a way to place N 
queens on an N x N 
chess board.
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Backtracking

 N-Queens Problem:
 So how would we do this?
 These slides are about backtracking, so the 

answer is obvious.  But for now, you don’t know 
what this means exactly.

 So what would you do?

 Exhaustive brute force approach:
 Find all possible arrangements of queens

 4,426,165,368 possible arrangements of 8 queens

 See which ones are legal
 Your CPU will cry…really, it will actually cry.
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How the program works

The program 
uses a stack to 
keep track of 
where each 
queen is 
placed.
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How the program works

Each time the 
program 
decides to 
place a queen 
on the board,       
the position of 
the new queen 
is stored in a 
record which is 
placed in the 
stack.

ROW 1, COL 
1
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How the program works

We also have 
an integer 
variable to 
keep track of 
how many 
rows have 
been filled so 
far.

ROW 1, COL 
1

1 filled
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How the program works

Each time we 
try to place a 
new queen in 
the next row, 
we start by 
placing the 
queen in the 
first column...

ROW 1, COL 
1

1 filled

ROW 2, COL 
1
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How the program works

...if there is a 
conflict with 
another queen, 
then we shift 
the new queen 
to the next 
column. ROW 1, COL 

1

1 filled

ROW 2, COL 
2
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How the program works

If another 
conflict occurs, 
the queen is 
shifted 
rightward 
again.

ROW 1, COL 
1

1 filled

ROW 2, COL 
3
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How the program works

When there are 
no conflicts, we 
stop and add 
one to the 
value of filled.

ROW 1, COL 
1

2 filled

ROW 2, COL 
3
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How the program works

Let's look at 
the third row.  
The first 
position we try 
has a conflict...

ROW 1, COL 
1

2 filled

ROW 2, COL 
3

ROW 3, COL 
1



Backtracking page 25

How the program works

...so we shift to 
column 2.  But 
another conflict 
arises...

ROW 1, COL 
1

2 filled

ROW 2, COL 
3

ROW 3, COL 
2
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How the program works

...and we shift 
to the third 
column.
Yet another 
conflict arises...

ROW 1, COL 
1

2 filled

ROW 2, COL 
3

ROW 3, COL 
3
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How the program works

...and we shift 
to column 4.  
There's still a 
conflict in 
column 4, so 
we try to shift 
rightward 
again...

ROW 1, COL 
1

2 filled

ROW 2, COL 
3

ROW 3, COL 
4
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How the program works

...but there's 
nowhere else 
to go.

ROW 1, COL 
1

2 filled

ROW 2, COL 
3

ROW 3, COL 
4
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How the program works

When we run out of 
room in a row:

 pop the stack,
 reduce filled by 1
 and continue                       

working on the 
previous row. ROW 1, COL 

1

1 filled

ROW 2, COL 
3
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How the program works

Now we 
continue 
working on row 
2, shifting the 
queen to the 
right.

ROW 1, COL 
1

1 filled

ROW 2, COL 
4
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How the program works

This position 
has no 
conflicts, so we 
can increase 
filled by 1, and 
move to row 3.

ROW 1, COL 
1

2 filled

ROW 2, COL 
4
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How the program works

In row 3, we 
start again at 
the first 
column.

ROW 1, COL 
1

2 filled

ROW 2, COL 
4

ROW 3, COL 
1
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Brief Interlude:  FAIL Picture
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Pseudocode for N-Queens

 Initialize a stack where we can keep track of 
our decisions.

 Place the first queen, pushing its position 
onto the stack and setting filled to 0.

 repeat these steps:
 if there are no conflicts with the queens...
 else if there is a conflict and there is room to shift 

the current queen rightward...
 else if there is a conflict and there is no room to 

shift the current queen rightward...
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Pseudocode for N-Queens

 repeat these steps
 if there are no conflicts with the queens...

Increase filled by 1.  If filled is now N, then
the algorithm is done.  Otherwise, move to

the next row and place a queen in the
first column.
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Pseudocode for N-Queens

 repeat these steps
 if there are no conflicts with the queens...
 else if there is a conflict and there is room to shift 

the current queen rightward...

Move the current queen rightward,
adjusting the record on top of the stack

to indicate the new position.
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Pseudocode for N-Queens

 repeat these steps
 if there are no conflicts with the queens...
 else if there is a conflict and there is room to shift 

the current queen rightward...
 else if there is a conflict and there is no room to 

shift the current queen rightward...

Backtrack!
Keep popping the stack, and reducing filled
by 1, until you reach a row where the queen

can be shifted rightward. Shift this queen right.
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Pseudocode for N-Queens

 repeat these steps
 if there are no conflicts with the queens...
 else if there is a conflict and there is room to shift 

the current queen rightward...
 else if there is a conflict and there is no room to 

shift the current queen rightward...

Backtrack!
Keep popping the stack, and reducing filled
by 1, until you reach a row where the queen

can be shifted rightward. Shift this queen right.
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 Stacks have many applications.
 The application which we have shown is called 

backtracking.
 The key to backtracking: Each choice is recorded 

in a stack.
 When you run out of choices for the current 

decision, you pop the stack, and continue trying 
different choices for the previous decision.

 Here’s an applet to see nQueens in action:
 http://www.cosc.canterbury.ac.nz/mukundan/dsal/NQP.html

Summary

http://www.cosc.canterbury.ac.nz/mukundan/dsal/NQP.html�
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Backtracking

WASN’T
THAT

CAPTIVATING!
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Daily Demotivator
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