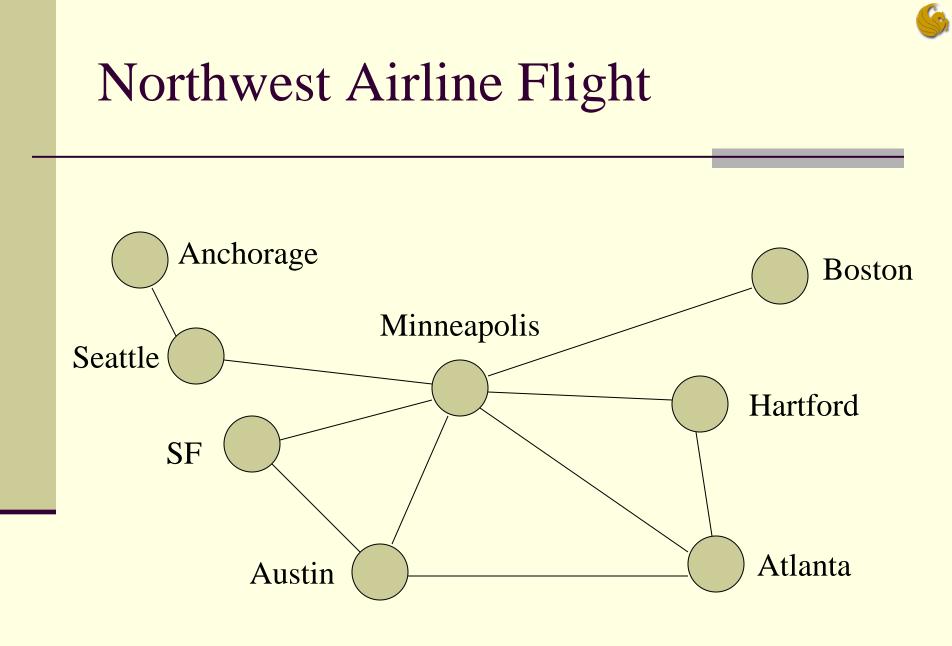
# **Graphs Intro.**

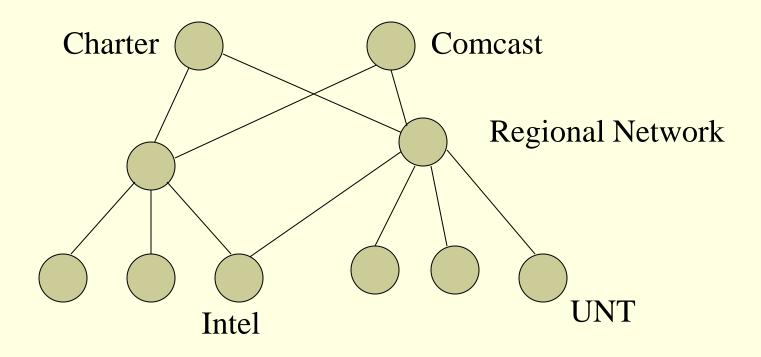


Computer Science Department University of Central Florida

COP 3502 – Computer Science I



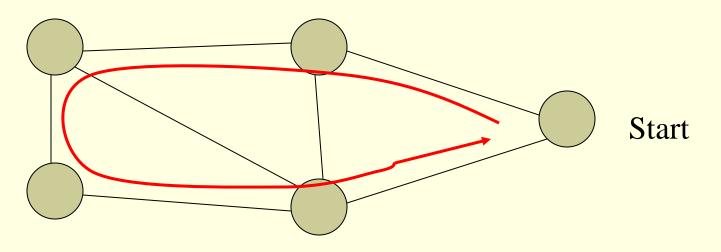
# Computer Network Or Internet





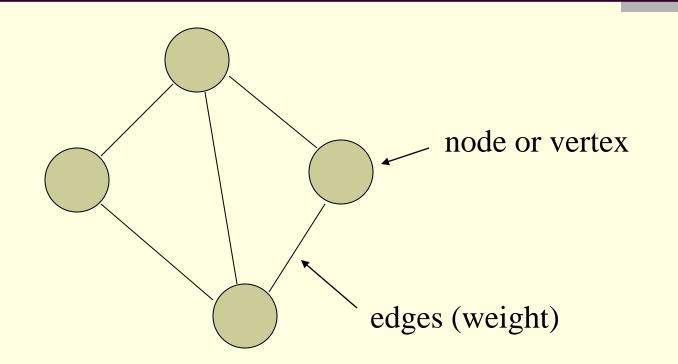
# Application

#### Traveling Saleman



Find the shortest path that connects all cities without a loop.

# Concepts of Graphs



#### G

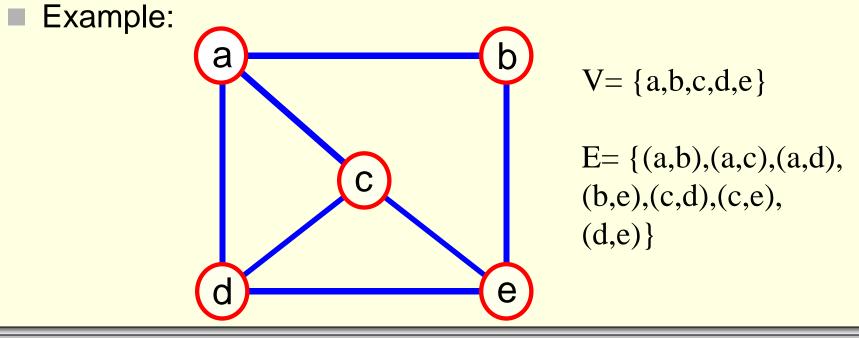
# Graph Definition

• A graph G = (V,E) is composed of:

V: set of vertices (nodes)

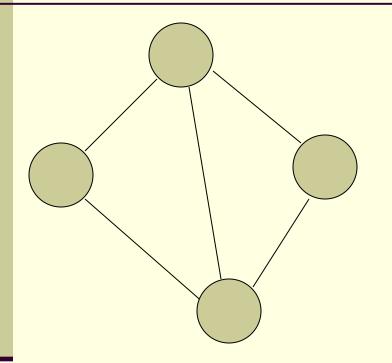
E: set of edges (arcs) connecting the vertices in V

An edge e = (u,v) is a pair of vertices



Graphs Intro.

# Undirected vs. Directed Graph



**Undirected Graph** 

- edge has no oriented

Directed Graph

- edge has oriented vertex

Graphs Intro.



# Subgraph

#### Subgraph:

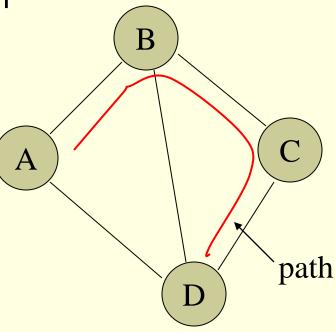
#### subset of vertices and edges

Graphs Intro. page 8



### Simple Path

- A simple path is a path such that all vertices are distinct, except that the first and the last could be the same.
  - ABCD is a simple path

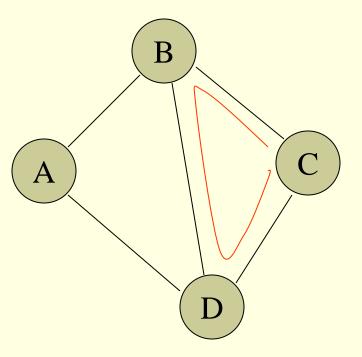




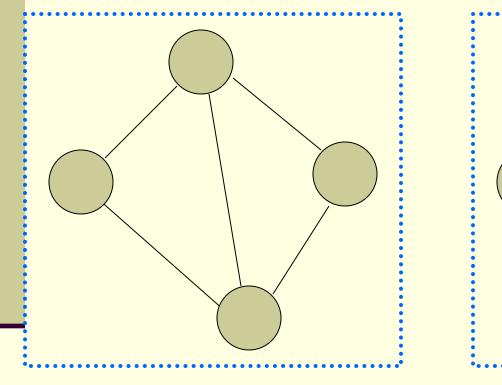
### Cycle

A cycle is a path that starts and ends at the same point. For undirected graph, the edges are distinct.

CBDC is a cycle



# Connected vs. Unconnected Graph



#### **Connected Graph**

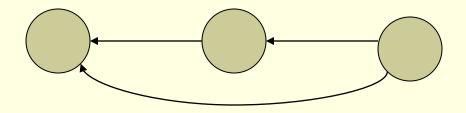
#### Unconnected Graph

| Graphs Intro. | page 11 |
|---------------|---------|



# Directed Acyclic Graph

### Directed Acyclic Graph (DAG) : directed graph without cycle

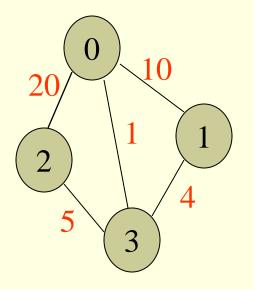


| Graphs Intro. | page 12 |
|---------------|---------|
|               |         |



# Weighted Graph

 Weighted graph: a graph with numbers assigned to its edges
 Weight: cost, distance, travel time, hop, etc.



#### G

# Representation Of Graph

- Two representations
  - Adjacency Matrix
  - Adjacency List

#### G

# Adjacency Matrix

- Assume N nodes in graph
- Use Matrix A[0...N-1][0...N-1]
  - if vertex i and vertex j are adjacent in graph, A[i][j]
     = 1,
  - otherwise A[i][j] = 0
  - if vertex i has a loop, A[i][i] = 1
  - if vertex i has no loop, A[i][i] = 0

# Example of Adjacency Matrix

| A[i][j] | 0 | 1 | 2 | 3 |
|---------|---|---|---|---|
| 0       | 0 | 1 | 1 | 0 |
| 1       | 1 | 0 | 1 | 1 |
| 2       | 1 | 1 | 0 | 1 |
| 3       | 0 | 1 | 1 | 0 |

So, Matrix A = 
$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

Graphs Intro.



### Undirected vs. Directed

Undirected graph

- adjacency matrix is symmetric
- A[i][j]=A[j][i]

### Directed graph

- adjacency matrix may not be symmetric
- A[i][j]≠A[j][i]



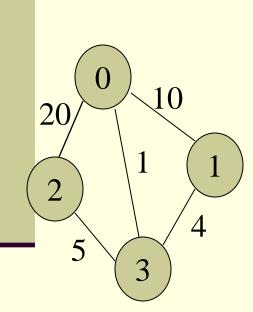
### **Directed Graph**

| A[i][j] | 0 | 1 | 2 | 3 |
|---------|---|---|---|---|
| 0       | 0 | 1 | 1 | 1 |
| 1       | 0 | 0 | 0 | 1 |
| 2       | 0 | 0 | 0 | 1 |
| 3       | 0 | 0 | 0 | 0 |

0 0 1

So, Matrix A = 
$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

# Weighted Graph



| A[i][j] | 0  | 1  | 2  | 3 |
|---------|----|----|----|---|
| 0       | 0  | 20 | 10 | 1 |
| 1       | 20 | 0  | 0  | 5 |
| 2       | 10 | 0  | 0  | 4 |
| 3       | 1  | 5  | 4  | 0 |

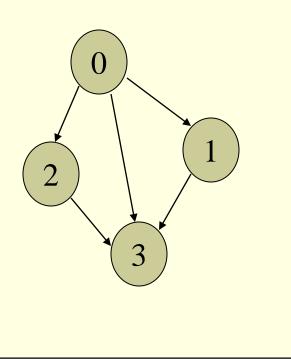
$$\left(\begin{array}{cccccccccc}
0 & 20 & 10 & 1 \\
20 & 0 & 0 & 5 \\
10 & 0 & 0 & 4 \\
1 & 5 & 4 & 0
\end{array}\right)$$

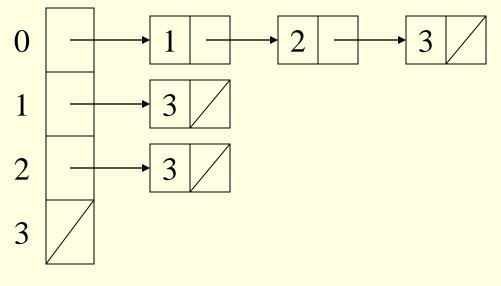
Graphs Intro.

#### G

# Adjacency List

- An array of lists
- the ith element of the array is a list of vertices that connect to vertex i





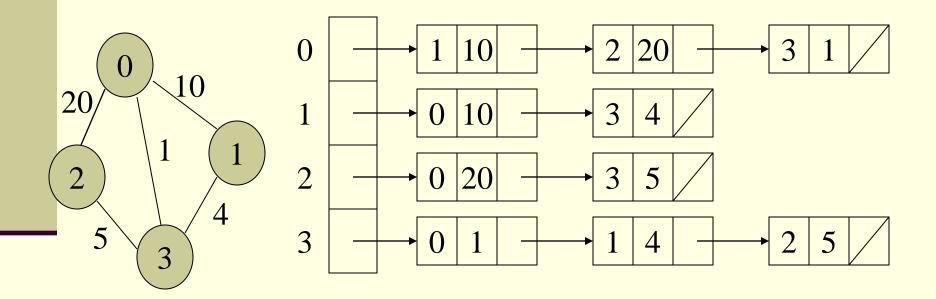
vertex 0 connect to vertex 1, 2 and 3 vertex 1 connects to 3 vertex 2 connects to 3

Graphs Intro.



# Weighted Graph

Weighted graph: extend each node with an addition field: weight



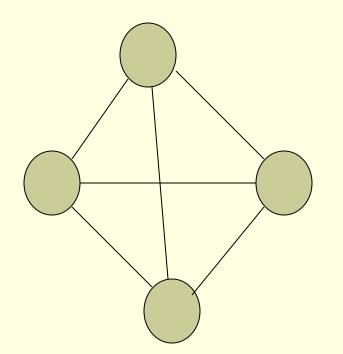
# **Comparison Of Representations**

|                                                                         |                     | 1                                           |
|-------------------------------------------------------------------------|---------------------|---------------------------------------------|
| Cost                                                                    | Adjacency<br>Matrix | Adjacency<br>List                           |
| Given two vertices u and v:<br>find out whether u and v are<br>adjacent | O(1)                | degree of<br>node<br>O(N)                   |
| Given a vertex u:<br>enumerate all neighbors of u                       | O(N)                | degree of<br>node<br>O(N)                   |
| For all vertices:<br>enumerate all neighbors of each<br>vertex          | O(N <sup>2</sup> )  | Summations<br>of all node<br>degree<br>O(E) |

#### G

# Complete Graph

• There is an edge between any two vertices



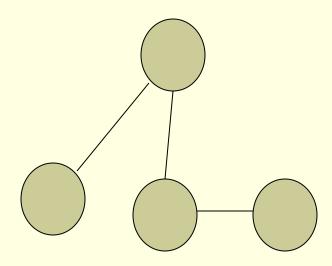
Total number of edges in graph:

$$E = N(N-1)/2 = O(N^2)$$



# Sparse Graph

• There is a very small number of edges in the graph



For example: E = N-1 = O(N)

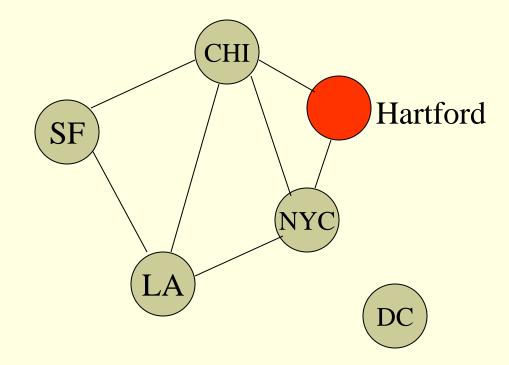
### Brief Interlude: FAIL Picture





### Graph Traversal

#### List out all cities that United Airline can reach from Hartford Airport





# Graph Traversal

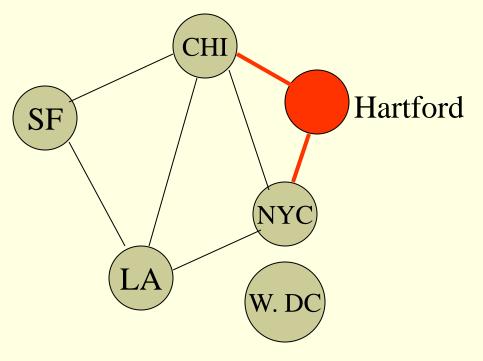
From vertex u, list out all vertices that can be reached in graph G

- Set of nodes to expand
  - We basically have to go through all the nodes
- Each node has a "flag" that indicates if we have visited it or not



### Step 1: { Hartford }

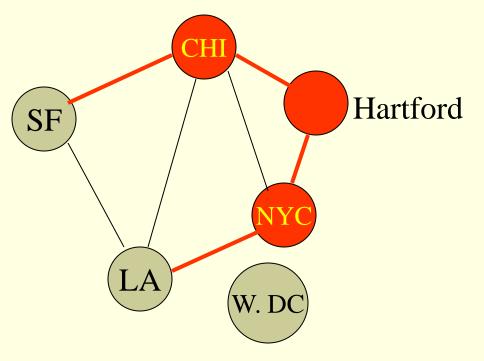
- find neighbors of Hartford
- { Hartford, NYC, CHI }





### Step 2: { Hartford, NYC, CHI }

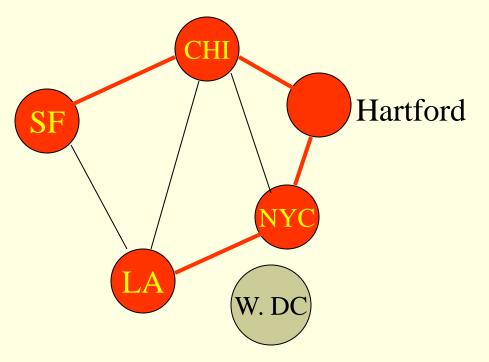
- find neighbors of NYC, CHI
- { Hartford, NYC, CHI, LA, SF }





### Step 3: {Hartford, NYC, CHI, LA, SF }

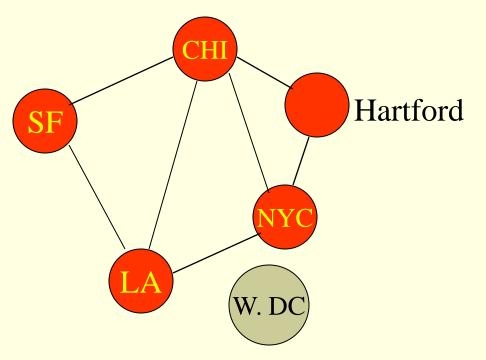
- find neighbors of LA, SF
- no other new neighbors





Finally we get all cities that United Airline can reach from Hartford Airport

Hartford, NYC, CHI, LA, SF }



# Algorithm of Graph Traversal

1. Mark all nodes as unvisited

ł

}

- 2. Pick a starting vertex u, add u to probing list
- 3. While (probing list is not empty)

Remove a node v from probing list

Mark node v as visited

For each neighbor w of v, if w is unvisited, add w to the probing list



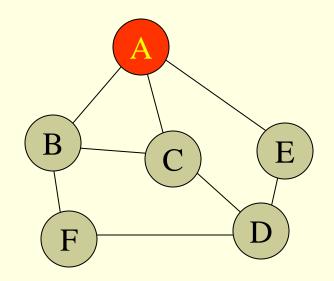
# Graph Traversal Algorithms

- Two algorithms
  - Depth First Traversal
  - Breadth First Traversal

#### G

# Depth First Traversal

- Probing List is implemented as stack (LIFO)
  - Example
    - A's neighbor: B, C, E
    - B's neighbor: A, C, F
    - C's neighbor: A, B, D
    - D's neighbor: E, C, F
    - E's neighbor: A, D
    - F's neighbor: B, D
    - start from vertex A



# Depth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

#### Initial State

- Visited Vertices { }
- Probing Vertices { A }
- Unvisited Vertices { A, B, C, D, E, F }

E

D

А

stack

A

В

F

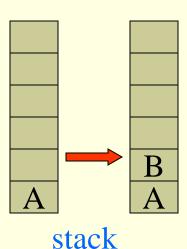
# Depth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

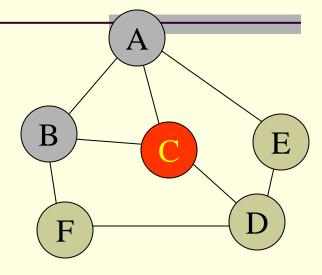
B C E F D

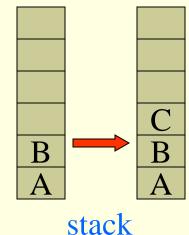
A

- Pick a vertex from stack, it is A, mark it as visited
- Find A's first unvisited neighbor, push it into stack
  - Visited Vertices { A }
  - Probing vertices { A, B }
  - Unvisited Vertices { B, C, D, E, F }

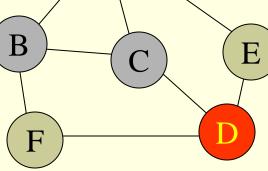


- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Pick a vertex from stack, it is B, mark it as visited
- Find B's first unvisited neighbor, push it in stack
  - Visited Vertices { A, B }
  - Probing Vertices { A, B, C }
  - Unvisited Vertices { C, D, E, F }



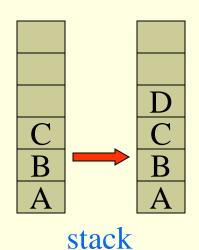


- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

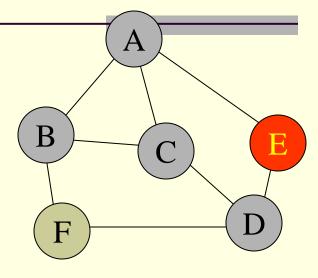


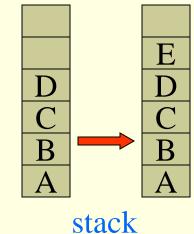
A

- Pick a vertex from stack, it is C, mark it as visited
- Find C's first unvisited neighbor, push it in stack
  - Visited Vertices { A, B, C }
  - Probing Vertices { A, B, C, D }
  - Unvisited Vertices { D, E, F }



- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Pick a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, push it in stack
  - Visited Vertices { A, B, C, D }
  - Probing Vertices { A, B, C, D, E }
  - Unvisited Vertices { E, F }

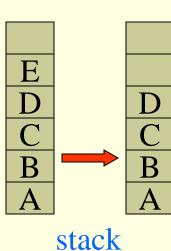


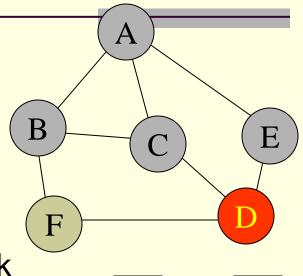


- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Pick a vertex from stack, it is E, mark it as visited

Graphs Intro.

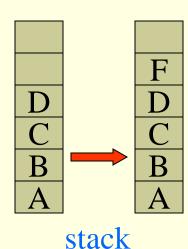
- Find E's first unvisited neighbor, no vertex found, Pop E
  - Visited Vertices { A, B, C, D, E }
  - Probing Vertices { A, B, C, D }
  - Unvisited Vertices { F }

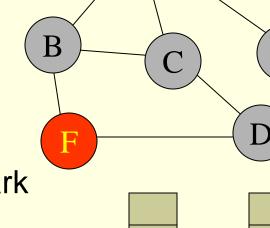




S

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Pick a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, push it in stack
  - Visited Vertices { A, B, C, D, E }
  - Probing Vertices { A, B, C, D, F}
  - Unvisited Vertices { F }





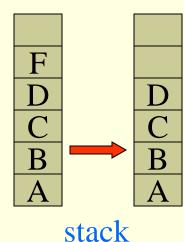
A

E

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

A

- Pick a vertex from stack, it is F, mark it as visited
- Find F's first unvisited neighbor, no vertex found, Pop F
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { A, B, C, D}
  - Unvisited Vertices { }



E

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Pick a vertex from stack, it is D, mark it as visited
- Find D's first unvisited neighbor, no vertex found, Pop D
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { A, B, C }
  - Unvisited Vertices { }

E

 $\square$ 

B

A

stack

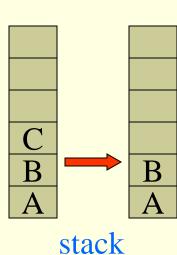
A

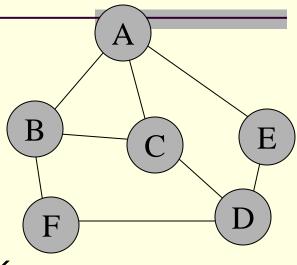
В

В

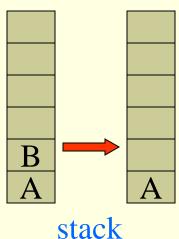
F

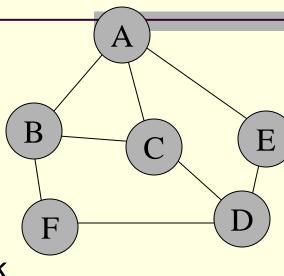
- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Pick a vertex from stack, it is C, mark it as visited
  - Find C's first unvisited neighbor, no vertex found, Pop C
    - Visited Vertices { A, B, C, D, E, F }
    - Probing Vertices { A, B }
    - Unvisited Vertices { }





- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Pick a vertex from stack, it is B, mark it as visited
  - Find B's first unvisited neighbor, no vertex found, Pop B
    - Visited Vertices { A, B, C, D, E, F }
    - Probing Vertices { A }
    - Unvisited Vertices { }

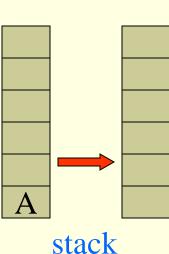


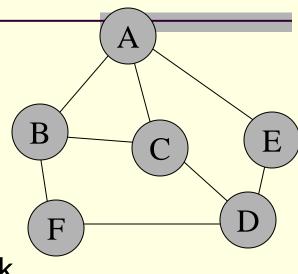


- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Pick a vertex from stack, it is A, mark it as visited
- Find A's first unvisited neighbor, no vertex found, Pop A
  - Visited Vertices { A, B, C, D, E, F }

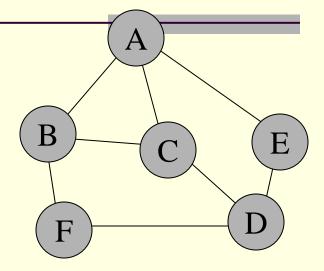
Graphs Intro.

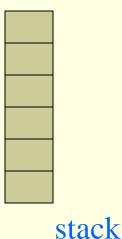
- Probing Vertices { }
- Unvisited Vertices { }





- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D
- Now probing list is empty
  End of Depth First Traversal
  Visited Vertices (A B C D F
  - Visited Vertices { A, B, C, D, E, F }
  - Probing Vertices { }
  - Unvisited Vertices { }

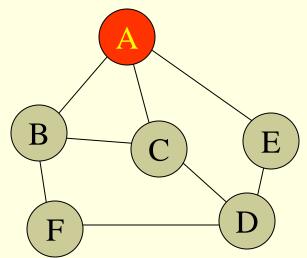






#### Breadth First Traversal

- Probing List is implemented as queue (FIFO)
  - Example
    - A's neighbor: B C E
    - B's neighbor: A C F
    - C's neighbor: A B D
    - D's neighbor: E C F
    - E's neighbor: A D
    - F's neighbor: B D
    - start from vertex A

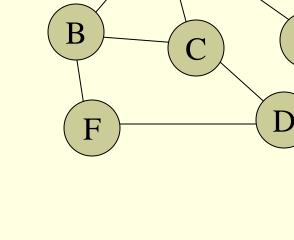


# Breadth First Traversal (Cont)

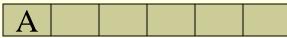
- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

#### Initial State

- Visited Vertices { }
- Probing Vertices { A }
- Unvisited Vertices { A, B, C, D, E, F }



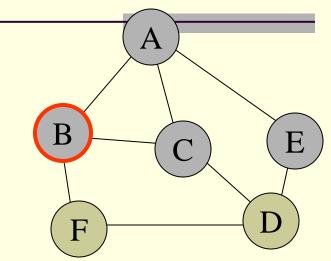
А



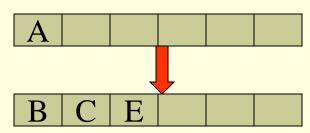
E

## Breadth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

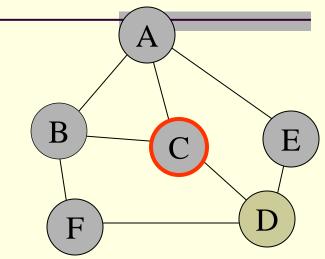


- Delete first vertex from queue, it is A, mark it as visited
  - Find A's all unvisited neighbors, mark them as visited, put them into queue
    - Visited Vertices { A, B, C, E }
    - Probing Vertices { B, C, E }
    - Unvisited Vertices { D, F }

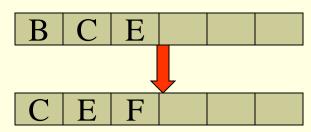


# Breadth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

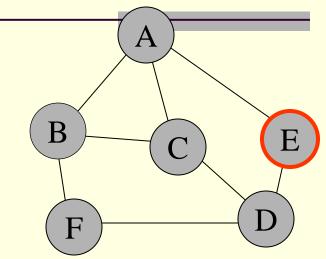


- Delete first vertex from queue, it is B, mark it as visited
  - Find B's all unvisited neighbors, mark them as visited, put them into queue
    - Visited Vertices { A, B, C, E, F }
    - Probing Vertices { C, E, F }
    - Unvisited Vertices { D }

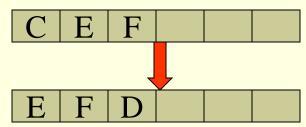


## Breadth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D



- Delete first vertex from queue, it is C, mark it as visited
  - Find C's all unvisited neighbors, mark them as visited, put them into queue
    - Visited Vertices { A, B, C, E, F, D }
    - Probing Vertices { E, F, D }
    - Unvisited Vertices { }



#### S

## Breadth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

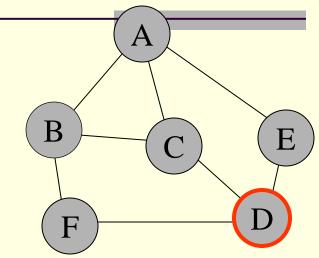
- A B C E D
- Delete first vertex from queue, it is E, mark it as visited
- Find E's all unvisited neighbors, no vertex found
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { F, D }
  - Unvisited Vertices { }



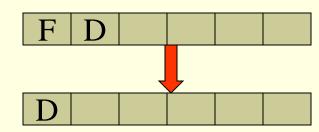
#### 6

# Breadth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D



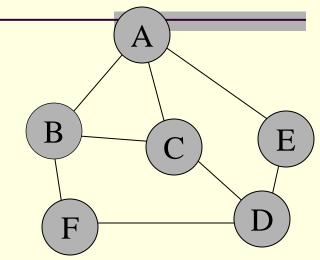
- Delete first vertex from queue, it is F, mark it as visited
- Find F's all unvisited neighbors, no vertex found
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { D }
  - Unvisited Vertices { }



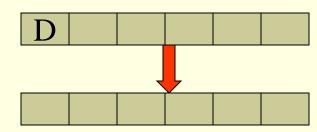
## <u>6</u>

# Breadth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D

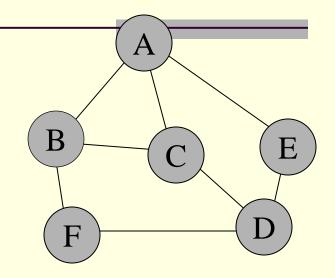


- Delete first vertex from queue, it is D, mark it as visited
- Find D's all unvisited neighbors, no vertex found
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { }
  - Unvisited Vertices { }

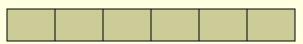


## Breadth First Traversal (Cont)

- A's neighbor: B C E
- B's neighbor: A C F
- C's neighbor: A B D
- D's neighbor: E C F
- E's neighbor: A D
- F's neighbor: B D



- Now the queue is empty
   End of Breadth First Traversal
  - Visited Vertices { A, B, C, E, F, D }
  - Probing Vertices { }
  - Unvisited Vertices { }

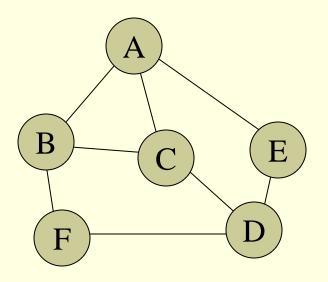




#### Difference Between DFT & BFT

Depth First Traversal (DFT)
 order of visited: A, B, C, D, E, F

Breadth First Traversal (BFT)order of visited: A, B, C, E, F, D





# WASN'T THAT **RAVISHING!**

Graphs Intro.

#### Daily Demotivator



Graphs Intro.

# **Graphs Intro.**



Computer Science Department University of Central Florida

COP 3502 – Computer Science I