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Computer Network Or Internet

Comcast

Regional Network

Intel UNT

Charter
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Application

 Traveling Saleman

 Find the shortest path that connects all cities 
without a loop.

Start
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Concepts of Graphs

edges (weight)

node or vertex
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Graph Definition
 A graph G = (V,E) is composed of:

V: set of vertices (nodes) 
E: set of edges (arcs) connecting the vertices in V

 An edge e = (u,v) is a pair of vertices
 Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}



Graphs Intro. page 7

Undirected vs. Directed Graph

Undirected Graph

– edge has no oriented

Directed Graph

– edge has oriented vertex
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Subgraph

 Subgraph:
 subset of vertices and  edges
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Simple Path

 A simple path is a path such that all vertices are 
distinct, except that the first and the last could 
be the same.
 ABCD is a simple path

B

C

D

A

path
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Cycle

 A cycle is a path that starts and ends at the 
same point. For undirected graph, the edges 
are distinct. 
 CBDC is a cycle

B

C

D

A
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Connected vs. Unconnected Graph

Connected Graph Unconnected Graph
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Directed Acyclic Graph

 Directed Acyclic Graph (DAG) :  directed 
graph without cycle
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Weighted Graph

 Weighted graph: a graph with numbers 
assigned to its edges

 Weight: cost, distance, travel time, hop, etc.

0

1

3

2

20 10

1

5
4
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Representation Of Graph

 Two representations

 Adjacency Matrix

 Adjacency List
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Adjacency Matrix

 Assume N nodes in graph
 Use Matrix A[0…N-1][0…N-1]

 if vertex i and vertex j are adjacent in graph, A[i][j] 
= 1,

 otherwise A[i][j] = 0
 if vertex i has a loop, A[i][i] = 1
 if vertex i has no loop, A[i][i] = 0
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Example of Adjacency Matrix

0

1

3

2

A[i][j] 0 1 2 3
0 0 1 1 0
1 1 0 1 1
2 1 1 0 1
3 0 1 1 0

So, Matrix A = 

0     1     1     0

1     0     1     1

1     1     0     1

0     1     1     0
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Undirected vs. Directed 

 Undirected graph
 adjacency matrix is symmetric
 A[i][j]=A[j][i]

 Directed graph
 adjacency matrix may not be symmetric
 A[i][j]≠A[j][i]
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Directed Graph

A[i][j] 0 1 2 3
0 0 1 1 1
1 0 0 0 1
2 0 0 0 1
3 0 0 0 0

0

1

3

2

So, Matrix A = 

0     1     1     1

0     0     0     1

0     0     0     1

0     0     0     0
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Weighted Graph

A[i][j] 0 1 2 3
0 0 20 10 1
1 20 0 0 5
2 10 0 0 4
3 1 5 4 0

0

1

3

2

20 10

1

5
4

So, Matrix A = 

0     20     10     1

20     0       0      5

10     0       0      4

1      5       4      0
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Adjacency List

 An array of lists
 the ith element of the array is a list of vertices that 

connect to vertex i

0

1

3

2

0

1

2

3

1 2 3

3

3

vertex 0 connect to vertex 1, 2 and 3
vertex 1 connects to 3
vertex 2 connects to 3
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Weighted Graph

 Weighted graph: extend each node with an 
addition field: weight

0

1

3

2

20 10

1

5
4

0

1

2

3

1 10 2 20 3 1

0 10 3 4

0 20 3 5

0 1 1 4 2 5
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Comparison Of Representations

Cost Adjacency 
Matrix

Adjacency 
List

Given two vertices u and v:
find out whether u and v are 
adjacent

O(1)
degree of 

node
O(N)

Given a vertex u: 
enumerate all neighbors of u

O(N)
degree of 

node
O(N)

For all vertices:
enumerate all neighbors of each 
vertex

O(N2)

Summations 
of all node 

degree
O(E)
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Complete Graph

Total number of edges 
in graph:

E = N(N-1)/2 = O(N2)

• There is an edge between any two vertices
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Sparse Graph

For example:
E = N-1= O(N) 

• There is a very small number of edges in the 
graph
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Brief Interlude:  FAIL Picture

Jacuzzi Fail
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Graph Traversal

 List out all cities that United Airline can reach 
from Hartford Airport

CHI

LA

SF

NYC

Hartford

DC
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Graph Traversal

 From vertex u, list out all vertices that can be 
reached in graph G

 Set of nodes to expand
 We basically have to go through all the nodes 

 Each node has a “flag” that indicates if we 
have visited it or not 
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Traversal Algorithm

 Step 1: { Hartford }
 find neighbors of Hartford
 { Hartford, NYC, CHI }

CHI

NYC

LA

SF Hartford

W. DC
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Traversal Algorithm

 Step 2: { Hartford, NYC, CHI }
 find neighbors of NYC, CHI
 { Hartford, NYC, CHI, LA, SF }

CHI

NYC

LA

SF Hartford

W. DC
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Traversal Algorithm

 Step 3: {Hartford, NYC, CHI, LA, SF }
 find neighbors of LA, SF
 no other new neighbors

CHI

NYC

LA

SF Hartford

W. DC
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Traversal Algorithm

 Finally we get all cities that United Airline can 
reach from Hartford Airport
 {Hartford, NYC, CHI, LA, SF }

CHI

NYC

LA

SF Hartford

W. DC
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Algorithm of Graph Traversal

1. Mark all nodes as unvisited
2. Pick a starting vertex u, add u to probing list
3. While ( probing list is not empty)

{
Remove a node v from probing list
Mark node v as visited
For each neighbor w of v, if w is unvisited, 

add w to the probing list
}
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Graph Traversal Algorithms

 Two algorithms
 Depth First Traversal
 Breadth First Traversal 
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Depth First Traversal

 Probing List is implemented as stack (LIFO)
 Example

 A’s neighbor: B, C, E
 B’s neighbor: A, C, F
 C’s neighbor: A, B, D
 D’s neighbor: E, C, F
 E’s neighbor: A, D
 F’s neighbor: B, D
 start from vertex A

A

B C E

F D
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Depth First Traversal (Cont)

 Initial State
 Visited Vertices  { }
 Probing Vertices { A }
 Unvisited Vertices { A, B, C, D, E, F }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

Astack
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is A, mark 
it as visited

 Find A’s first unvisited neighbor, push 
it into stack
 Visited Vertices  { A }
 Probing vertices { A, B }
 Unvisited Vertices { B, C, D, E, F }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

B
A

stack
A
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is B, 
mark it as visited

 Find B’s first unvisited neighbor, 
push it in stack
 Visited Vertices  { A, B }
 Probing Vertices { A, B, C }
 Unvisited Vertices { C, D, E, F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

C
B
A

stack

B
A

A

B C E

F D
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is C, mark 
it as visited

 Find C’s first unvisited neighbor, push 
it in stack
 Visited Vertices  { A, B, C }
 Probing Vertices { A, B, C, D }
 Unvisited Vertices { D, E, F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B
A

C
B
A
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is D, 
mark it as visited

 Find D’s first unvisited neighbor, 
push it in stack
 Visited Vertices  { A, B, C, D }
 Probing Vertices { A, B, C, D, E }
 Unvisited Vertices { E, F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B

E

A

D
C
B
A
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is E, mark 
it as visited

 Find E’s first unvisited neighbor, no 
vertex found, Pop E
 Visited Vertices  { A, B, C, D, E }
 Probing Vertices { A, B, C, D }
 Unvisited Vertices { F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B
A

D
C
B

E

A
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is D, mark 
it as visited

 Find D’s first unvisited neighbor, 
push it in stack
 Visited Vertices  { A, B, C, D, E }
 Probing Vertices { A, B, C, D, F}
 Unvisited Vertices { F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B

F

A

D
C
B
A



Graphs Intro. page 42

Depth First Traversal (Cont)

 Pick a vertex from stack, it is F, mark 
it as visited

 Find F’s first unvisited neighbor, no 
vertex found, Pop F
 Visited Vertices  { A, B, C, D, E, F }
 Probing Vertices { A, B, C, D}
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B
A

D
C
B

F

A
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is D, mark 
it as visited

 Find D’s first unvisited neighbor, no 
vertex found, Pop D
 Visited Vertices  { A, B, C, D, E, F }
 Probing Vertices { A, B, C }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

C
B
A

D
C
B
A
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is C, mark 
it as visited

 Find C’s first unvisited neighbor, no 
vertex found, Pop C
 Visited Vertices  { A, B, C, D, E, F }
 Probing Vertices { A, B }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

B
A

C
B
A
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is B, mark 
it as visited

 Find B’s first unvisited neighbor, no 
vertex found, Pop B
 Visited Vertices  { A, B, C, D, E, F }
 Probing Vertices { A }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

A
B
A
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Depth First Traversal (Cont)

 Pick a vertex from stack, it is A, mark 
it as visited

 Find A’s first unvisited neighbor, no 
vertex found, Pop A
 Visited Vertices  { A, B, C, D, E, F }
 Probing Vertices { }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

A
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Depth First Traversal (Cont)

 Now probing list is empty
 End of Depth First Traversal

 Visited Vertices  { A, B, C, D, E, F
}

 Probing Vertices { }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D
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Breadth First Traversal

 Probing List is implemented as queue 
(FIFO)

 Example
 A’s neighbor: B C E
 B’s neighbor: A C F
 C’s neighbor: A B D
 D’s neighbor: E C F
 E’s neighbor: A D
 F’s neighbor: B D
 start from vertex A

A

B C E

F D
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Breadth First Traversal (Cont)

 Initial State
 Visited Vertices  { }
 Probing Vertices { A }
 Unvisited Vertices { A, B, C, D, E, F }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

A

queue
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Breadth First Traversal (Cont)

 Delete first vertex from queue, it is A, 
mark it as visited

 Find A’s all unvisited neighbors, mark 
them as visited, put them into queue
 Visited Vertices  { A, B, C, E }
 Probing Vertices { B, C, E }
 Unvisited Vertices { D, F }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

A

queue

B EC
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Breadth First Traversal (Cont)

 Delete first vertex from queue, it is B, 
mark it as visited

 Find B’s all unvisited neighbors, mark 
them as visited, put them into queue
 Visited Vertices  { A, B, C, E, F }
 Probing Vertices { C, E, F }
 Unvisited Vertices { D }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

B EC

queue

C FE
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Breadth First Traversal (Cont)

 Delete first vertex from queue, it is C, 
mark it as visited

 Find C’s all unvisited neighbors, mark 
them as visited, put them into queue
 Visited Vertices  { A, B, C, E, F, D }
 Probing Vertices { E, F, D }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

C FE

queue

E DF
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Breadth First Traversal (Cont)

 Delete first vertex from queue, it is E, 
mark it as visited

 Find E’s all unvisited neighbors, no 
vertex found
 Visited Vertices  { A, B, C, E, F, D }
 Probing Vertices { F, D }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

E DF

queue

F D
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Breadth First Traversal (Cont)

 Delete first vertex from queue, it is F, 
mark it as visited

 Find F’s all unvisited neighbors, no 
vertex found
 Visited Vertices  { A, B, C, E, F, D }
 Probing Vertices { D }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

F D

queue

D
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Breadth First Traversal (Cont)

 Delete first vertex from queue, it is D, 
mark it as visited

 Find D’s all unvisited neighbors, no 
vertex found
 Visited Vertices  { A, B, C, E, F, D }
 Probing Vertices { }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

D

queue
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Breadth First Traversal (Cont)

 Now the queue is empty
 End of Breadth First Traversal

 Visited Vertices  { A, B, C, E, F, D }
 Probing Vertices { }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

queue
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Difference Between DFT & BFT

 Depth First Traversal (DFT)
 order of visited: A, B, C, D, E, F

 Breadth First Traversal (BFT)
 order of visited: A, B, C, E, F, D

A

B C E

F D
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Graph Intro.

WASN’T
THAT

RAVISHING!
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Daily Demotivator
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