
Computer Science Department
University of Central Florida

Graphs Intro.

COP 3502 – Computer Science I

Graphs Intro. page 2

Northwest Airline Flight

Boston

Hartford

Atlanta

Minneapolis

Austin

SF

Seattle

Anchorage

Graphs Intro. page 3

Computer Network Or Internet

Comcast

Regional Network

Intel UNT

Charter

Graphs Intro. page 4

Application

 Traveling Saleman

 Find the shortest path that connects all cities
without a loop.

Start

Graphs Intro. page 5

Concepts of Graphs

edges (weight)

node or vertex

Graphs Intro. page 6

Graph Definition
 A graph G = (V,E) is composed of:

V: set of vertices (nodes)
E: set of edges (arcs) connecting the vertices in V

 An edge e = (u,v) is a pair of vertices
 Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),(a,d),
(b,e),(c,d),(c,e),
(d,e)}

Graphs Intro. page 7

Undirected vs. Directed Graph

Undirected Graph

– edge has no oriented

Directed Graph

– edge has oriented vertex

Graphs Intro. page 8

Subgraph

 Subgraph:
 subset of vertices and edges

Graphs Intro. page 9

Simple Path

 A simple path is a path such that all vertices are
distinct, except that the first and the last could
be the same.
 ABCD is a simple path

B

C

D

A

path

Graphs Intro. page 10

Cycle

 A cycle is a path that starts and ends at the
same point. For undirected graph, the edges
are distinct.
 CBDC is a cycle

B

C

D

A

Graphs Intro. page 11

Connected vs. Unconnected Graph

Connected Graph Unconnected Graph

Graphs Intro. page 12

Directed Acyclic Graph

 Directed Acyclic Graph (DAG) : directed
graph without cycle

Graphs Intro. page 13

Weighted Graph

 Weighted graph: a graph with numbers
assigned to its edges

 Weight: cost, distance, travel time, hop, etc.

0

1

3

2

20 10

1

5
4

Graphs Intro. page 14

Representation Of Graph

 Two representations

 Adjacency Matrix

 Adjacency List

Graphs Intro. page 15

Adjacency Matrix

 Assume N nodes in graph
 Use Matrix A[0…N-1][0…N-1]

 if vertex i and vertex j are adjacent in graph, A[i][j]
= 1,

 otherwise A[i][j] = 0
 if vertex i has a loop, A[i][i] = 1
 if vertex i has no loop, A[i][i] = 0

Graphs Intro. page 16

Example of Adjacency Matrix

0

1

3

2

A[i][j] 0 1 2 3
0 0 1 1 0
1 1 0 1 1
2 1 1 0 1
3 0 1 1 0

So, Matrix A =

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

Graphs Intro. page 17

Undirected vs. Directed

 Undirected graph
 adjacency matrix is symmetric
 A[i][j]=A[j][i]

 Directed graph
 adjacency matrix may not be symmetric
 A[i][j]≠A[j][i]

Graphs Intro. page 18

Directed Graph

A[i][j] 0 1 2 3
0 0 1 1 1
1 0 0 0 1
2 0 0 0 1
3 0 0 0 0

0

1

3

2

So, Matrix A =

0 1 1 1

0 0 0 1

0 0 0 1

0 0 0 0

Graphs Intro. page 19

Weighted Graph

A[i][j] 0 1 2 3
0 0 20 10 1
1 20 0 0 5
2 10 0 0 4
3 1 5 4 0

0

1

3

2

20 10

1

5
4

So, Matrix A =

0 20 10 1

20 0 0 5

10 0 0 4

1 5 4 0

Graphs Intro. page 20

Adjacency List

 An array of lists
 the ith element of the array is a list of vertices that

connect to vertex i

0

1

3

2

0

1

2

3

1 2 3

3

3

vertex 0 connect to vertex 1, 2 and 3
vertex 1 connects to 3
vertex 2 connects to 3

Graphs Intro. page 21

Weighted Graph

 Weighted graph: extend each node with an
addition field: weight

0

1

3

2

20 10

1

5
4

0

1

2

3

1 10 2 20 3 1

0 10 3 4

0 20 3 5

0 1 1 4 2 5

Graphs Intro. page 22

Comparison Of Representations

Cost Adjacency
Matrix

Adjacency
List

Given two vertices u and v:
find out whether u and v are
adjacent

O(1)
degree of

node
O(N)

Given a vertex u:
enumerate all neighbors of u

O(N)
degree of

node
O(N)

For all vertices:
enumerate all neighbors of each
vertex

O(N2)

Summations
of all node

degree
O(E)

Graphs Intro. page 23

Complete Graph

Total number of edges
in graph:

E = N(N-1)/2 = O(N2)

• There is an edge between any two vertices

Graphs Intro. page 24

Sparse Graph

For example:
E = N-1= O(N)

• There is a very small number of edges in the
graph

Graphs Intro. page 25

Brief Interlude: FAIL Picture

Jacuzzi Fail

Graphs Intro. page 26

Graph Traversal

 List out all cities that United Airline can reach
from Hartford Airport

CHI

LA

SF

NYC

Hartford

DC

Graphs Intro. page 27

Graph Traversal

 From vertex u, list out all vertices that can be
reached in graph G

 Set of nodes to expand
 We basically have to go through all the nodes

 Each node has a “flag” that indicates if we
have visited it or not

Graphs Intro. page 28

Traversal Algorithm

 Step 1: { Hartford }
 find neighbors of Hartford
 { Hartford, NYC, CHI }

CHI

NYC

LA

SF Hartford

W. DC

Graphs Intro. page 29

Traversal Algorithm

 Step 2: { Hartford, NYC, CHI }
 find neighbors of NYC, CHI
 { Hartford, NYC, CHI, LA, SF }

CHI

NYC

LA

SF Hartford

W. DC

Graphs Intro. page 30

Traversal Algorithm

 Step 3: {Hartford, NYC, CHI, LA, SF }
 find neighbors of LA, SF
 no other new neighbors

CHI

NYC

LA

SF Hartford

W. DC

Graphs Intro. page 31

Traversal Algorithm

 Finally we get all cities that United Airline can
reach from Hartford Airport
 {Hartford, NYC, CHI, LA, SF }

CHI

NYC

LA

SF Hartford

W. DC

Graphs Intro. page 32

Algorithm of Graph Traversal

1. Mark all nodes as unvisited
2. Pick a starting vertex u, add u to probing list
3. While (probing list is not empty)

{
Remove a node v from probing list
Mark node v as visited
For each neighbor w of v, if w is unvisited,

add w to the probing list
}

Graphs Intro. page 33

Graph Traversal Algorithms

 Two algorithms
 Depth First Traversal
 Breadth First Traversal

Graphs Intro. page 34

Depth First Traversal

 Probing List is implemented as stack (LIFO)
 Example

 A’s neighbor: B, C, E
 B’s neighbor: A, C, F
 C’s neighbor: A, B, D
 D’s neighbor: E, C, F
 E’s neighbor: A, D
 F’s neighbor: B, D
 start from vertex A

A

B C E

F D

Graphs Intro. page 35

Depth First Traversal (Cont)

 Initial State
 Visited Vertices { }
 Probing Vertices { A }
 Unvisited Vertices { A, B, C, D, E, F }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

Astack

Graphs Intro. page 36

Depth First Traversal (Cont)

 Pick a vertex from stack, it is A, mark
it as visited

 Find A’s first unvisited neighbor, push
it into stack
 Visited Vertices { A }
 Probing vertices { A, B }
 Unvisited Vertices { B, C, D, E, F }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

B
A

stack
A

Graphs Intro. page 37

Depth First Traversal (Cont)

 Pick a vertex from stack, it is B,
mark it as visited

 Find B’s first unvisited neighbor,
push it in stack
 Visited Vertices { A, B }
 Probing Vertices { A, B, C }
 Unvisited Vertices { C, D, E, F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

C
B
A

stack

B
A

A

B C E

F D

Graphs Intro. page 38

Depth First Traversal (Cont)

 Pick a vertex from stack, it is C, mark
it as visited

 Find C’s first unvisited neighbor, push
it in stack
 Visited Vertices { A, B, C }
 Probing Vertices { A, B, C, D }
 Unvisited Vertices { D, E, F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B
A

C
B
A

Graphs Intro. page 39

Depth First Traversal (Cont)

 Pick a vertex from stack, it is D,
mark it as visited

 Find D’s first unvisited neighbor,
push it in stack
 Visited Vertices { A, B, C, D }
 Probing Vertices { A, B, C, D, E }
 Unvisited Vertices { E, F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B

E

A

D
C
B
A

Graphs Intro. page 40

Depth First Traversal (Cont)

 Pick a vertex from stack, it is E, mark
it as visited

 Find E’s first unvisited neighbor, no
vertex found, Pop E
 Visited Vertices { A, B, C, D, E }
 Probing Vertices { A, B, C, D }
 Unvisited Vertices { F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B
A

D
C
B

E

A

Graphs Intro. page 41

Depth First Traversal (Cont)

 Pick a vertex from stack, it is D, mark
it as visited

 Find D’s first unvisited neighbor,
push it in stack
 Visited Vertices { A, B, C, D, E }
 Probing Vertices { A, B, C, D, F}
 Unvisited Vertices { F }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B

F

A

D
C
B
A

Graphs Intro. page 42

Depth First Traversal (Cont)

 Pick a vertex from stack, it is F, mark
it as visited

 Find F’s first unvisited neighbor, no
vertex found, Pop F
 Visited Vertices { A, B, C, D, E, F }
 Probing Vertices { A, B, C, D}
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

D
C
B
A

D
C
B

F

A

Graphs Intro. page 43

Depth First Traversal (Cont)

 Pick a vertex from stack, it is D, mark
it as visited

 Find D’s first unvisited neighbor, no
vertex found, Pop D
 Visited Vertices { A, B, C, D, E, F }
 Probing Vertices { A, B, C }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

C
B
A

D
C
B
A

Graphs Intro. page 44

Depth First Traversal (Cont)

 Pick a vertex from stack, it is C, mark
it as visited

 Find C’s first unvisited neighbor, no
vertex found, Pop C
 Visited Vertices { A, B, C, D, E, F }
 Probing Vertices { A, B }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

B
A

C
B
A

Graphs Intro. page 45

Depth First Traversal (Cont)

 Pick a vertex from stack, it is B, mark
it as visited

 Find B’s first unvisited neighbor, no
vertex found, Pop B
 Visited Vertices { A, B, C, D, E, F }
 Probing Vertices { A }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

A
B
A

Graphs Intro. page 46

Depth First Traversal (Cont)

 Pick a vertex from stack, it is A, mark
it as visited

 Find A’s first unvisited neighbor, no
vertex found, Pop A
 Visited Vertices { A, B, C, D, E, F }
 Probing Vertices { }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

A

Graphs Intro. page 47

Depth First Traversal (Cont)

 Now probing list is empty
 End of Depth First Traversal

 Visited Vertices { A, B, C, D, E, F
}

 Probing Vertices { }
 Unvisited Vertices { }

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

stack

A

B C E

F D

Graphs Intro. page 48

Breadth First Traversal

 Probing List is implemented as queue
(FIFO)

 Example
 A’s neighbor: B C E
 B’s neighbor: A C F
 C’s neighbor: A B D
 D’s neighbor: E C F
 E’s neighbor: A D
 F’s neighbor: B D
 start from vertex A

A

B C E

F D

Graphs Intro. page 49

Breadth First Traversal (Cont)

 Initial State
 Visited Vertices { }
 Probing Vertices { A }
 Unvisited Vertices { A, B, C, D, E, F }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

A

queue

Graphs Intro. page 50

Breadth First Traversal (Cont)

 Delete first vertex from queue, it is A,
mark it as visited

 Find A’s all unvisited neighbors, mark
them as visited, put them into queue
 Visited Vertices { A, B, C, E }
 Probing Vertices { B, C, E }
 Unvisited Vertices { D, F }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

A

queue

B EC

Graphs Intro. page 51

Breadth First Traversal (Cont)

 Delete first vertex from queue, it is B,
mark it as visited

 Find B’s all unvisited neighbors, mark
them as visited, put them into queue
 Visited Vertices { A, B, C, E, F }
 Probing Vertices { C, E, F }
 Unvisited Vertices { D }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

B EC

queue

C FE

Graphs Intro. page 52

Breadth First Traversal (Cont)

 Delete first vertex from queue, it is C,
mark it as visited

 Find C’s all unvisited neighbors, mark
them as visited, put them into queue
 Visited Vertices { A, B, C, E, F, D }
 Probing Vertices { E, F, D }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

C FE

queue

E DF

Graphs Intro. page 53

Breadth First Traversal (Cont)

 Delete first vertex from queue, it is E,
mark it as visited

 Find E’s all unvisited neighbors, no
vertex found
 Visited Vertices { A, B, C, E, F, D }
 Probing Vertices { F, D }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

E DF

queue

F D

Graphs Intro. page 54

Breadth First Traversal (Cont)

 Delete first vertex from queue, it is F,
mark it as visited

 Find F’s all unvisited neighbors, no
vertex found
 Visited Vertices { A, B, C, E, F, D }
 Probing Vertices { D }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

F D

queue

D

Graphs Intro. page 55

Breadth First Traversal (Cont)

 Delete first vertex from queue, it is D,
mark it as visited

 Find D’s all unvisited neighbors, no
vertex found
 Visited Vertices { A, B, C, E, F, D }
 Probing Vertices { }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

D

queue

Graphs Intro. page 56

Breadth First Traversal (Cont)

 Now the queue is empty
 End of Breadth First Traversal

 Visited Vertices { A, B, C, E, F, D }
 Probing Vertices { }
 Unvisited Vertices { }

A

B C E

F D

– A’s neighbor: B C E
– B’s neighbor: A C F
– C’s neighbor: A B D
– D’s neighbor: E C F
– E’s neighbor: A D
– F’s neighbor: B D

queue

Graphs Intro. page 57

Difference Between DFT & BFT

 Depth First Traversal (DFT)
 order of visited: A, B, C, D, E, F

 Breadth First Traversal (BFT)
 order of visited: A, B, C, E, F, D

A

B C E

F D

Graphs Intro. page 58

Graph Intro.

WASN’T
THAT

RAVISHING!

Graphs Intro. page 59

Daily Demotivator

Computer Science Department
University of Central Florida

Graphs Intro.

COP 3502 – Computer Science I

	Graphs Intro.
	Northwest Airline Flight
	Computer Network Or Internet
	Application
	Concepts of Graphs
	Graph Definition
	Undirected vs. Directed Graph
	Subgraph
	Simple Path
	Cycle
	Connected vs. Unconnected Graph
	Directed Acyclic Graph
	Weighted Graph
	Representation Of Graph
	Adjacency Matrix
	Example of Adjacency Matrix
	Undirected vs. Directed
	Directed Graph
	Weighted Graph
	Adjacency List
	Weighted Graph
	Comparison Of Representations
	Complete Graph
	Sparse Graph
	Brief Interlude: FAIL Picture
	Graph Traversal
	Graph Traversal
	Traversal Algorithm
	Traversal Algorithm
	Traversal Algorithm
	Traversal Algorithm
	Algorithm of Graph Traversal
	Graph Traversal Algorithms
	Depth First Traversal
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Depth First Traversal (Cont)
	Breadth First Traversal
	Breadth First Traversal (Cont)
	Breadth First Traversal (Cont)
	Breadth First Traversal (Cont)
	Breadth First Traversal (Cont)
	Breadth First Traversal (Cont)
	Breadth First Traversal (Cont)
	Breadth First Traversal (Cont)
	Breadth First Traversal (Cont)
	Difference Between DFT & BFT
	Graph Intro.
	Daily Demotivator
	Graphs Intro.

