
Computer Science Department
University of Central Florida

Linked Lists:
Inserting Nodes

COP 3502 – Computer Science I

Linked Lists: Inserting Nodes page 2

Review of Linked Lists

 What is a linked list?
 Sequence of nodes chained together

 Data part
 Link part (points to next node in the chain)

 Need a head pointer to point to the front of list
 Called myList or Head or whatever you want

 It’s goal in life is just to point to the head of the list

 Need a helper pointer to point to traverse list
 help_ptr

 We then save the value stored in myList into help_ptr,
thus allowing help_ptr to also point to the front of the list

 And we can nod use help_ptr to traverse the list

Linked Lists: Inserting Nodes page 3

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 We can use help_ptr to traverse the list pointed to
by myList

 Here would be the instruction to walk one node over:

 Note that the syntax here is correct
 Why?
 Cuz both sides of the assignment statement are pointers to

struct ll_node

 Let’s now examine this statement in detail
 And how it changes our picture

help_ptr = help_ptr->next;

Linked Lists: Inserting Nodes page 4

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Here’s our before picture:
 Remember, what is the goal here?

 We want help_ptr to point to the second node in the list

 The question is:
 How do we accomplish this?

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 5

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 That second node is located somewhere in memory

 It has an address
 Currently where is that address saved?
 In other words, locate the pointer that is pointing to the

second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 6

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Think:
 The “next” pointer, of the first node, is currently pointing to

the second node
 And what is a pointer? An address!
 So the address of the second node is currently saved in

the “next” pointer of the first node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 7

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Remember:
 We want help_ptr to point to the second node
 So we need to take the address that is stored in the “next”

of the first node and save it into help_ptr
 This will make help_ptr point to the second node

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 8

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;

Linked Lists: Inserting Nodes page 9

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Again, here’s the instruction that does this:

 Here’s how that statement changes our picture:

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

help_ptr = help_ptr->next;

Linked Lists: Inserting Nodes page 10

Linked Lists

 Accessing Nodes of a Linked List
 Traversing (moving through) the list

 Now we could refer to the data field of the second
node as: help_ptr->data

 We can also repeatedly use help_ptr in this fashion
to iterate through the list

help_ptr

data next data next data next
myList

NULL

A linked list containing many elements

……….

Linked Lists: Inserting Nodes page 11

Traversing Linked Lists

 Traverse and Print out data of a linked list
 Assume that myList is already pointing to a

valid linked list of nodes of type ll_node
 Here’s the code to Traverse a linked list:

 Review previous slides for more info on this

struct ll_node *help_ptr;
help_ptr = myList;

while (help_ptr != NULL) {
printf("%d ", help_ptr->data);
help_ptr = help_ptr->next;

}

Linked Lists: Inserting Nodes page 12

Linked Lists: Inserting Nodes

New Material:
Inserting Nodes

Linked Lists: Inserting Nodes page 13

Linked Lists: Basic Operations

 Operations Performed on Linked Lists
 Several operations can be performed on linked

lists
 Add a new node
 Delete a node
 Search for a node
 Counting nodes
 Modifying nodes
 and more

 We will build functions to perform these
operations

Linked Lists: Inserting Nodes page 14

Linked Lists: Basic Operations

 Design Approach
 Before going further, we must understand the

design approach of our functions
 Functions that change the contents of lists (insertion

and deletion) will return the list head pointer
 Why?
 Let’s say we have a list with 4 nodes and we are adding a

new node
 As an example, let’s say that based on its key value, the

new node is inserted at the beginning of the list
 As a result, the address of the front of the list (address of

the first node) has now changed!
 We must return the newly updated head of the list

Linked Lists: Inserting Nodes page 15

Linked Lists: Basic Operations

 Design Approach
 Before going further, we must understand the

design approach of our functions
 Functions that change the contents of lists (insertion

and deletion) will return the list head pointer
 Here’s an example of when this happens (insertion):

 myList = insertNewNode(...);

 So if the head of the list changes within the
insertNewNode function
 The function MUST return the updated head pointer
 myList will be updated accordingly

 If the head pointer doesn’t change within the function:
 myList is simply reset to its original address

Linked Lists: Inserting Nodes page 16

Linked Lists: Basic Operations

 Design Approach
 Before going further, we must understand the

design approach of our functions
 Functions that do not change the contents of the list

return values that are consistent with their purpose
 Example: a function to locate a node will return an integer

(1 perhaps) to indicate whether or not the node was found
 Example: a function to determine the number of nodes in

the list will most likely return an integer count
 Finally, functions that process the entire list, such as

printing the list, will usually simply return void

Linked Lists: Inserting Nodes page 17

Linked Lists: Basic Operations

 Linked List Order
 Linked Lists are linear structures

 They should always have some type of order
 This could be chronological order: order of arrival and

insertion into the list
 Key-based order: lexical ordering based on some key

value of the data items (alphabetical by last name, or
ordered by NID, etc)

 Key based lists are the most common
 New nodes are added to the linked list based on the lexical

ordering of key values
 We will focus these slides on how to insert into a

sorted list (key-based list)

Linked Lists: Inserting Nodes page 18

Linked Lists: Insertion

 Adding Nodes to a Linked List
 There are four main steps involved here:
1) Allocate memory for the new node
2) Determine the insertion point
 You need to locate the new node’s predecessor

 Basically, we need to find the node that comes before
where you want to insert the new node

3) Point the new node to its successor
 To the node that will come after it, once inserted

4) Point the predecessor node to the new node

Linked Lists: Inserting Nodes page 19

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Step 2 is to determine the insertion point

 For this, we need the location of the new node’s
predecessor

 The are four possibilities:
1) The list is empty. Therefore, there is no predecessor, and

new node will become the first node.
2) The new node is to be inserted at the beginning of the list,

so again, there is no predecessor node.
3) The new node is the last node of the list. So its

predecessor was the previous last node
4) The new node is inserted at some arbitrary point, which is

neither the first node or the last node. Meaning, the new
node will go somewhere in the middle of the list.

Linked Lists: Inserting Nodes page 20

Linked Lists: Insertion

 Adding Nodes to a Linked List
 We mentioned (few slides back) that we will use

sorted linked lists
 Meaning, when we insert, we need to insert a new

node into the correct position

 But for now, for the sake of ease:
 Assume that nodes are simply added to the front of

the list
 We will use a function to add nodes
 The function must then return the new HEAD of the list

 It will be a new head right? Of course! Cuz we just added
a node at the front. This changes what the head pointer
will point to!

Linked Lists: Inserting Nodes page 21

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 There are two scenarios:
1) The list could be empty

 Meaning, the head pointer, myList, simply points to NULL
2) Or there are existing nodes already in the list

 Let’s look at both of these scenarios...

Linked Lists: Inserting Nodes page 22

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 There are two scenarios:
1) Insertion into an Empty List

4
myList

NULL

A list after the insertion of the new node

myList
NULL

An empty linked list

4

The new node to be inserted

NULL

Linked Lists: Inserting Nodes page 23

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 There are two scenarios:
2) Insertion at the Head of an existing list

2
myList

NULL

A list after the insertion of the new node

4

myList
NULL

The initial liked list

4 2

The new node to be inserted

NULL

Linked Lists: Inserting Nodes page 24

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 There are two scenarios:
1) Insertion into an Empty List
2) Insertion at the Head of an existing list

 Let’s now look at the code for this in detail…

Linked Lists: Inserting Nodes page 25

Linked Lists: Insertion

 Adding Nodes to a Linked List
 First, here’s a sample node:

 And here is its respective struct skeleton:

data next

struct ll_node {
int data;
struct ll_node *next;

};

Linked Lists: Inserting Nodes page 26

Adding Nodes to Front (code)
// Function Prototype:
struct ll_node* addToFront(struct ll_node *list, int value) ;

int main() {
int number = 0;
// We now make our head pointer, myList and initialize to NULL
struct ll_node *myList = NULL;
// User enters data for new node (or -1 to exit)
while(number!= -1) {

// Get the next number.
printf(“Enter data for next node: ");
scanf("%d", &number);

// Add to linked list if it's not -1.
if (number !=-1)

myList = addToFront(myList, number);
}
return 1;

}

Linked Lists: Inserting Nodes page 27

Adding Nodes to Front (code)
struct ll_node* addToFront(struct ll_node *list, int value) {

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If the original list is empty, set the original head
// pointer to point to the new node.
if(list == NULL)

list = pNew;
// Else, list is currently pointing to a non-empty list.
else {

// Point new node to wherever Head pointer pointed to.
pNew->next = list;

// Now make Head pointer point to the new node.
list = pNew;

}
return list;

}

Linked Lists: Inserting Nodes page 28

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

2

The new node to be inserted

NULL

pNew

myList
NULL

An empty linked list

Linked Lists: Inserting Nodes page 29

Adding Nodes to Front (code)
struct ll_node* addToFront(struct ll_node *list, int value) {

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If the original list is empty, set the original head
// pointer to point to the new node.
if(list == NULL)

list = pNew;
// Else, list is currently pointing to a non-empty list.
else {

// Point new node to wherever Head pointer pointed to.
pNew->next = list;

// Now make Head pointer point to the new node.
list = pNew;

}
return list;

}

Linked Lists: Inserting Nodes page 30

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 If the list is empty (myList points to NULL)
 Take the address of pNew and put it into myList
 This makes myList now point to the new Node

2

The new node to be inserted

NULL

pNew

myList
NULL

An empty linked list

Linked Lists: Inserting Nodes page 31

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

2

The new node to be inserted

NULL

pNew

myList
NULL

An empty linked list

myList

NULL

A list after the insertion of the new node

Linked Lists: Inserting Nodes page 32

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

2

The new node to be inserted

NULL

pNew

myList
NULL

An empty linked list

myList

2 NULL

A list after the insertion of the new node

Linked Lists: Inserting Nodes page 33

Adding Nodes to Front (code)
struct ll_node* addToFront(struct ll_node *list, int value) {

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If the original list is empty, set the original head
// pointer to point to the new node.
if(list == NULL)

list = pNew;
// Else, list is currently pointing to a non-empty list.
else {

// Point new node to wherever Head pointer pointed to.
pNew->next = list;

// Now make Head pointer point to the new node.
list = pNew;

}
return list;

}

Linked Lists: Inserting Nodes page 34

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

 ELSE, if the list is non-empty
 Take the address that myList points to and put in the
next of pNew

 This makes pNew point to the (previously) first node

myList
NULL

The initial liked list

4
2

The new node to be inserted

NULL

pNew

Linked Lists: Inserting Nodes page 35

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList
NULL

The initial liked list

4
2

The new node to be inserted

NULL

pNew

Linked Lists: Inserting Nodes page 36

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList

NULL

A list after the insertion of the new node

4

myList
NULL

The initial liked list

4
2

The new node to be inserted

pNew

Linked Lists: Inserting Nodes page 37

Adding Nodes to Front (code)
struct ll_node* addToFront(struct ll_node *list, int value) {

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If the original list is empty, set the original head
// pointer to point to the new node.
if(list == NULL)

list = pNew;
// Else, list is currently pointing to a non-empty list.
else {

// Point new node to wherever Head pointer pointed to.
pNew->next = list;

// Now make Head pointer point to the new node.
list = pNew;

}
return list;

}

Linked Lists: Inserting Nodes page 38

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList

NULL

A list after the insertion of the new node

4

myList
NULL

The initial liked list

4
2

The new node to be inserted

pNew

Basically, take the
address stored in
pNew and put it in
myList

Linked Lists: Inserting Nodes page 39

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList

NULL

A list after the insertion of the new node

4

myList
NULL

The initial liked list

4
2

The new node to be inserted

pNew

Linked Lists: Inserting Nodes page 40

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the FRONT of a list:

myList
NULL

The initial liked list

4
2

The new node to be inserted

pNew

2
myList

NULL

A list after the insertion of the new node

4

Linked Lists: Inserting Nodes page 41

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Now let’s assume that we are adding always to

the end of the list
 The code in main won’t change a whole lot
 But the function to add to the end is a bit

different.
 Can anyone tell us why?
 Because we need to traverse the list in order to

arrive at the insertion point (the end of the list)
 Here’s the picture followed by the code:

Linked Lists: Inserting Nodes page 42

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the END of a list

4
myList

NULL

A list after the insertion of the new node

6

myList
NULL

The initial liked list

4 6

The new node to be inserted

NULL

Linked Lists: Inserting Nodes page 43

Adding Nodes to End (code)
// Function Prototype:
struct ll_node* addToEnd(struct ll_node *list, int value) ;

int main() {
int number = 0;
// We now make our head pointer, myList and initialize to NULL
struct ll_node *myList = NULL;
// User enters data for new node (or -1 to exit)
while(number!= -1) {

// Get the next number.
printf(“Enter data for next node: ");
scanf("%d", &number);

// Add to linked list if it's not -1.
if (number !=-1)

myList = addToEnd(myList, number);
}
return 1;

}

Linked Lists: Inserting Nodes page 44

Adding Nodes to End (code)
struct ll_node* addToEnd(struct ll_node *list, int value) {

// Make helper pointer and store head of list into it
struct ll_node *help_ptr = list;

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If list is empty, pNew becomes the first node
if (list == NULL)

return pNew;
// Else, traverse the list to arrive a the last node
while (help_ptr->next != NULL)

help_ptr = help_ptr->next;
// Make the last node point to the to-be-inserted node, i.e.
// put the address of new node into the last node’s “next”
help_ptr->next = pNew;

// Return a pointer to the modified list
return list;

}

If the list is empty:
pNew will be the first (and only) node of the list
So we have our head pointer, myList or list

And this head pointer MUST point to the new node, pNew
So we can simply return the address of pNew to main
Remember, we called this function with:
myList = addToEnd(myList, number);
So whatever we return will be saved in myList (head pointer)

Linked Lists: Inserting Nodes page 45

Adding Nodes to End (code)
struct ll_node* addToEnd(struct ll_node *list, int value) {

// Make helper pointer and store head of list into it
struct ll_node *help_ptr = list;

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// If list is empty, pNew becomes the first node
if (list == NULL)

return pNew;
// Else, traverse the list to arrive a the last node
while (help_ptr->next != NULL)

help_ptr = help_ptr->next;
// Make the last node point to the to-be-inserted node, i.e.
// put the address of new node into the last node’s “next”
help_ptr->next = pNew;

// Return a pointer to the modified list
return list;

}

Linked Lists: Inserting Nodes page 46

Brief Interlude: Human Stupidity

Linked Lists: Inserting Nodes page 47

Linked Lists: Insertion

 Adding Nodes to a Linked List
 Adding to the MIDDLE of a list:

 Think about what must happen.
 We are inserting a new node between two other nodes
 So the new node must now point to its successor node

 Meaning, it must point to where its predecessor node was
pointing to (before insertion of new node)

 Then the address of the new node must be saved into
the “next” of the predecessor node.
 These two steps maintain the integrity of the list

 Again, here’s some purty pictures

Linked Lists: Inserting Nodes page 48

 Adding Nodes to a Linked List
 Adding to the MIDDLE of a list:

Linked Lists: Insertion

6

The new node to be inserted

NULL

myList
The initial liked list

NULL4 8

2
myList

NULL

A list after the insertion of the new node

86

Linked Lists: Inserting Nodes page 49

myList
NULL4 8

Step 2: Find
logical predecessor

6

Step 1: Allocate memory

6

myList
NULL4 8

Step 3: Point new
node to its

logical successor

6

myList
NULL4 8

Step 4: Point predecessor
node to the new node

Linked Lists: Insertion in Detail

Linked Lists: Inserting Nodes page 50

Adding Nodes to Sorted List

 Adding Nodes to a Linked List
 Adding nodes to a sorted list

 Now we are hopefully ready to add a new node to a
sorted linked list
 This new node may end up being inserted at the

beginning, the middle, or at the end.
 The following code takes care of all possibilities
 Again, we are just using an int as the data item
 The nodes of the linked list are sorted in ascending

order based on the value stored in each node’s data

Linked Lists: Inserting Nodes page 51

Adding Nodes to Sorted List (code)
// Function Prototype:
struct ll_node* insert(struct ll_node *list, int value) ;

int main() {
int number = 0;
// We now make our head pointer, myList and initialize to NULL
struct ll_node *myList = NULL;
// User enters data for new node (or -1 to exit)
while(number!= -1) {

// Get the next number.
printf(“Enter data for next node: ");
scanf("%d", &number);

// Add to linked list if it's not -1.
if (number !=-1)

myList = insert(myList, number);
}
return 1;

}

Linked Lists: Inserting Nodes page 52

Adding Nodes to Sorted List (code)
struct ll_node* insert(struct ll_node *list, int value) {

// Make helper pointer and store head of list into it
struct ll_node *help_ptr = list;

// Create the new node and put data (from argument) into it
struct ll_node * pNew = (struct ll_node *)

malloc(sizeof(struct ll_node));
pNew->data = value;
pNew->next = NULL;
// Insertion into an empty list
// OR Insertion at the front of a non-empty list
if (list == NULL || list->data > value) {

pNew->next = list;
list = pNew;
return list;

}
Let’s now look at this IF statement in detail.

Linked Lists: Inserting Nodes page 53

Adding Nodes to Sorted List (code)

 Adding nodes to front of sorted list
 Think about it:

 When do we go inside the IF statement?
 If list is NULL

 Means the list is currently empty
 OR if the data at the node that list points to is greater

than value
 Meaning, the new node will be at the front

if (list == NULL || list->data > value) {
pNew->next = list;
list = pNew;
return list;

}

Linked Lists: Inserting Nodes page 54

Adding Nodes to Sorted List (code)

 Adding nodes to front of sorted list
 Now look at the three lines inside the statement

 In both scenarios (empty list or insert at front)
 We MUST take the address that is currently saved in list

and save it in pNew->next
 What does this do?

 It makes pNew point to whatever list was pointing to
 So if list was pointing to node A (the previous first node)
 Now pNew will also point to node A
 Which makes sense, since pNew will be the new first node
if (list == NULL || list->data > value) {

pNew->next = list;
list = pNew;
return list;

}

Linked Lists: Inserting Nodes page 55

Adding Nodes to Sorted List (code)

 Adding nodes to front of sorted list
 Now look at the three lines inside the statement

 In both scenarios (empty list or insert at front)
 Also, we MUST take the address of pNew and save it into
list

 This makes list point to pNew (the new first node)
 Which makes sense right? list is the head pointer!

 Remember, the only goal in life of the head pointer is to point
to the first node!

 Finally, we return list (head pointer address) to main
if (list == NULL || list->data > value) {

pNew->next = list;
list = pNew;
return list;

}

Linked Lists: Inserting Nodes page 56

Adding Nodes to Sorted List (code)

struct ll_node* addToEnd(struct ll_node *list, int value) {

// ...
// CODE BELONGING HERE WAS ON PREVIOUS PAGE
// ...

// Continuing the code ...

// Insert at MIDDLE or END of list
// Find the right place to insert
while(help_ptr->next != NULL && help_ptr->next->data < value)

help_ptr = help_ptr->next;

// So help_ptr is now pointing to the node right before
// the spot where we want to insert.
// Now insert pNew right after the position that help_ptr points to
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return help_ptr;

}

While:
there are still nodes in the list
AND the data value at the node AFTER the one that help_ptr
points to is less than the value of the new node to be inserted

Meaning, we haven’t reached the insertion spot yet
KEEP traversing the list to find insertion spot

Linked Lists: Inserting Nodes page 57

Adding Nodes to Sorted List (code)

struct ll_node* addToEnd(struct ll_node *list, int value) {

// ...
// CODE BELONGING HERE WAS ON PREVIOUS PAGE
// ...

// Continuing the code ...

// Insert at MIDDLE or END of list
// Find the right place to insert
while(help_ptr->next != NULL && help_ptr->next->data < value)

help_ptr = help_ptr->next;

// So help_ptr is now pointing to the node right before
// the spot where we want to insert.
// Now insert pNew right after the position that help_ptr points to
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return help_ptr;

}

Notice the && instead of ||
So when do we exit the while loop?

If the data in the node AFTER the one that help_ptr points to is
greater than or equal to value

Meaning, we’ve found our insertion spot (after help_ptr)
OR we exit once help_ptr->next is NULL (reached end of list)

Linked Lists: Inserting Nodes page 58

Adding Nodes to Sorted List (code)

struct ll_node* addToEnd(struct ll_node *list, int value) {

// ...
// CODE BELONGING HERE WAS ON PREVIOUS PAGE
// ...

// Continuing the code ...

// Insert at MIDDLE or END of list
// Find the right place to insert
while(help_ptr->next != NULL && help_ptr->next->data < value)

help_ptr = help_ptr->next;

// So help_ptr is now pointing to the node right before
// the spot where we want to insert.
// Now insert pNew right after the position that help_ptr points to
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

} Let’s now look at these last three lines in detail.

Linked Lists: Inserting Nodes page 59

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Remember:

 We just traversed the list with help_ptr to find our
insertion spot

 So right now, help_ptr is pointing to the node
BEFORE our insertion spot.
 It is pointing to the predecessor.

 Example: if we need to insert at position 12, then
help_ptr is currently pointing to position 11

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 60

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew at the END of the list
 pNew->next will need to point to NULL

 Indicating the end of the list
 So we execute this line of code

 pNew->next = help_ptr->next;

 Since help_ptr was pointing to the last node
 help_ptr->next will have NULL in it
 We save that value into pNew->next
// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 61

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew at the END of the list
 Also, the previous last node in the list

 Which is currently pointed to by help_ptr
 Must now point to the new last node (pNew)
 So we execute this line of code:

 help_ptr->next = pNew;

 Saves the address of pNew into help_ptr->next

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 62

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew at the END of the list
 The connections are now made
 And we can simply return the head of the list

 return list;

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 63

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew in the MIDDLE of the list
 pNew->next will need to point to the next node

 The node that will come after it (once pNew is inserted)
 So we execute this line of code

 pNew->next = help_ptr->next;

 Since help_ptr was pointing to the predecessor
 help_ptr->next will have the address of the successor
 We save that value into pNew->next
// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 64

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew in the MIDDLE of the list
 Also, the predecessor

 Which is currently pointed to by help_ptr
 Must now point the newly inserted node (pNew)
 So we execute this line of code:

 help_ptr->next = pNew;

 This saves the address of pNew into help_ptr->next

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 65

Adding Nodes to Sorted List (code)

 Adding nodes to middle or end of sorted list
 Now, think about what happens:

 If we are inserting pNew in the MIDDLE of the list
 The connections are now made
 And we can simply return the head of the list

 return list;

// ... previous code was here
pNew->next = help_ptr->next;
help_ptr->next = pNew;
return list;

}

Linked Lists: Inserting Nodes page 66

Linked Lists: Inserting Nodes

WASN’T
THAT

AWESOME!

Linked Lists: Inserting Nodes page 67

Daily Demotivator

Computer Science Department
University of Central Florida

Linked Lists:
Inserting Nodes

COP 3502 – Computer Science I

	Linked Lists:�Inserting Nodes
	Review of Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Linked Lists
	Traversing Linked Lists
	Linked Lists: Inserting Nodes
	Linked Lists: Basic Operations
	Linked Lists: Basic Operations
	Linked Lists: Basic Operations
	Linked Lists: Basic Operations
	Linked Lists: Basic Operations
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Adding Nodes to Front (code)
	Adding Nodes to Front (code)
	Linked Lists: Insertion
	Adding Nodes to Front (code)
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Adding Nodes to Front (code)
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Adding Nodes to Front (code)
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Linked Lists: Insertion
	Adding Nodes to End (code)
	Adding Nodes to End (code)
	Adding Nodes to End (code)
	Brief Interlude: Human Stupidity
	Linked Lists: Insertion
	Linked Lists: Insertion
	
	Adding Nodes to Sorted List
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Adding Nodes to Sorted List (code)
	Linked Lists: Inserting Nodes
	Daily Demotivator
	Linked Lists:�Inserting Nodes

