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Linked Lists:  Basic Operations

 Operations Performed on Linked Lists
 Several operations can be performed on linked 

lists
 Add a new node
 Delete a node
 Search for a node
 Counting nodes
 Modifying nodes
 and more

 We will build functions to perform these 
operations
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Linked Lists:  Deleting Nodes

 General Approach:
 You must search for the node that you want to 

delete (remember, we are using sorted lists)
 If found, you must delete the node from the list
 This means that you change the various link 

pointers
 The predecessor of the deleted node must point to 

the deleted nodes successor
 Finally, the node must be physically deleted 

from the heap
 You must free the node
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Linked Lists:  Deleting Nodes

 General Approach:
 There are 4 deletion scenarios:
1) Delete the first node of a list
2) Delete any middle node of the list

 Not the first node or the last node

3) Delete the last node of the list
4) A special case when we delete the only node in 

the list
 Causes the resulting list to become empty
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

6
myList

NULL

The list after deleting the first node

4
myList

NULL

The initial list

6

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

 Think about how you make this happen:
 myList needs to point to the 2nd node in the list
 So we save the address of the 2nd node into myList
 Where do we get that address:

 It is saved in the “next” of the first node
 So we take that address and save it into myList

4
myList

NULL

The initial list

6

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

 Think about how you make this happen:
 myList needs to point to the 2nd node in the list
 So we save the address of the 2nd node into myList
 Where do we get that address:

 It is saved in the “next” of the first node
 So we take that address and save it into myList
 Finally, we free the 1st node

4
myList

NULL

The initial list

6

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
2) Delete any middle node of the list

4
myList

NULL

The initial list

86

node to be deleted

4
myList

NULL

The list after deletion has occurred

8
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
2) Delete any middle node of the list

 Think about how you make this happen:
 Node # 4 (with 4 as data) needs to point to Node # 8
 So we save the address of Node #8 into “next” of Node # 4
 Where do we get the address of Node #8?

 It is saved in the “next” of Node # 6!
 So we take that address and save it to the “next” of Node # 4

4
myList

NULL

The initial list

86

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
2) Delete any middle node of the list

 Think about how you make this happen:
 Node # 4 (with 4 as data) needs to point to Node # 8
 So we save the address of Node #8 into “next” of Node # 4
 Where do we get the address of Node #8?

 It is saved in the “next” of Node # 6!
 So we take that address and save it to the “next” of Node # 4
 Finally, we free Node # 6

4
myList

NULL

The initial list

86

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
3) Delete the last node of the list

4
myList

NULL

The initial list

86

node to be deleted

4
myList

NULL

The list after deletion has occurred

6
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
3) Delete the last node of the list

 Think about how you make this happen:
 We simply need to save NULL to the “next” of Node # 6

 This bypasses Node # 8
 Where is NULL currently saved?

 In the “next” of Node # 8
 So take that value (NULL) and save into the “next” of Node #6

4
myList

NULL

The initial list

86

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
3) Delete the last node of the list

 Think about how you make this happen:
 We simply need to save NULL to the “next” of Node # 6

 This bypasses Node # 8
 Where is NULL currently saved?

 In the “next” of Node # 8
 So take that value (NULL) and save into the “next” of Node #6
 Finally, we free Node # 8

4
myList

NULL

The initial list

86

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
4) A special case when we delete the only node in 

the list

myList
NULL

The list after deleting the only node.

7

myList

NULL

The initial list

This is a special case only in 
the sense that the head pointer 
value, which is returned to the 
function, will be NULL instead 
of pointing to a valid node.
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
4) Special case:  deleting the only node in the list

 Think about how you make this happen:
 We simply need to save NULL into myList

 This bypasses Node # 7
 Where is NULL currently saved?

 In the “next” of Node # 7
 So take that value (NULL) and save into myList

7

myList

NULL

The initial list
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
4) Special case:  deleting the only node in the list

 Think about how you make this happen:
 We simply need to save NULL into myList

 This bypasses Node # 7
 Where is NULL currently saved?

 In the “next” of Node # 7
 So take that value (NULL) and save into myList
 Finally, we free Node # 7

7

myList

NULL

The initial list
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Brief Interlude:  Human Stupidity
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Deleting Nodes (code)
// Function Prototype:
struct ll_node* delete(struct ll_node *list, int target) ;

int main( ) {
int number = 0;
// We assume that we already created a valid list (myList).
// There are several nodes already in myList.
// This is just a cheesy while loop to call delete function
while(number!= -1) {

// Get the next number.
printf(“Enter data that you wish to delete:  ");
scanf("%d", &number);

// Delete node from linked list if number is not -1.
if (number !=-1)

myList = delete(myList, number);
}
return 1;

}
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

} Now let’s look at this code in detail.
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int value) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
We make two pointers of type ll_node:

 help_ptr and node2delete
 We should all know what help_ptr is for

 Traversing our list
 node2delete will be used later in the program

 When deleting from the middle or end of a list
 node2delete will be used to point to the node we want to delete
 We can then free it accordingly

We then save list into help_ptr
 Remember, list points to the first node of the list
 We take the address that is stored in list and save into help_ptr

 Thus making help_ptr also point to the same first node
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
We can only delete a node if there are nodes in the list!
 Right.?.
 So if there are no nodes in the list, there is nothing to delete
 That’s what this line checks for
 if help_ptr does equal NULL, then the list is empty
 So:

 The ONLY time we delete (enter into this IF statement) is when:
 help_ptr != NULL
 Meaning, there are node(s) in the list
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 Examine this IF statement

 At this point, help_ptr is pointing to the front of the list
 So this says, if our target is found within this first node

 Execute the 3 lines within this IF statement
 So this if statement is specifically checking if we are deleting the 

FIRST node in the list
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 So IF this is the case (we are deleting the first node):

 Take whatever the first node points to and save it into list
 Remember, help_ptr is pointing to the first node!
 Take the address saved in help_ptr->next and save into list

 So now, list will point to the second node in the list
 If there were multiple nodes

 OR list will point to NULL
 If the list only had one node

Either way, we effectively 
bypassed the first node!
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

6
myList

NULL

The list after deleting the first node

4
myList

NULL

The initial list

6

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

 Think about how you make this happen:
 myList needs to point to the 2nd node in the list
 So we save the address of the 2nd node into myList
 Where do we get that address:

 It is saved in the “next” of the first node
 So we take that address and save it into myList

4
myList

NULL

The initial list

6

node to be deleted
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Linked Lists:  Deleting Nodes

 4 Cases of Deletion:
1) Delete the first node of a list

 Think about how you make this happen:
 myList needs to point to the 2nd node in the list
 So we save the address of the 2nd node into myList
 Where do we get that address:

 It is saved in the “next” of the first node
 So we take that address and save it into myList
 Finally, we free the 1st node

4
myList

NULL

The initial list

6

node to be deleted
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 So IF this is the case (we are deleting the first node):

 Take whatever the first node points to and save it into list
 Remember, help_ptr is pointing to the first node!
 Take the address saved in help_ptr->next and save into list

 So now, list will point to the second node in the list
 If there were multiple nodes

 OR list will point to NULL
 If the list only had one node

Either way, we effectively 
bypassed the first node!
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 So IF this is the case (we are deleting the first node):

 Now, think, we just bypassed that first node
 But that first node is still there in memory

 So we MUST free the space allocated to it
 If you remember, help_ptr is still pointing to that first node
 Although no part of the list is pointing to it
 We use the free command to free the space pointed to by help_ptr

 Finally, we return the list to main
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 The previous IF statement was used to check if the node to be 

deleted was at the FRONT of the list
 So now, if we made it this far (to the while loop), we know the 

node is NOT at the front of the list
 So we must traverse the list looking for the node to delete

 And then we delete it!
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 Specifically, this while loop checks to make sure that the 
next of help_ptr is not NULL
Why?

 Cause if it is NULL, then we’ve reached the end of the list
 So we continue this while loop possibly all the way to the end 

of the list
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

In detail:
 Additionally, within this while loop:

 We will be checking the data value at one node AFTER where 
help_ptr points to
 We MUST make sure that help_ptr->next does not equal NULL
 Cuz if it does equal NULL and we try to check the data of a node that 

doesn’t exist, we will get an error!
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

} Now let’s look at this while loop in detail.
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 There are 2 main parts of this while loop:

 The IF statement
 Checks to see if that particular node has the target value

 Meaning, this is the node we want to delete
 If found, we delete, we RETURN to main, and we exit the delete function

 Now, if we do NOT enter the IF statement (target not found)
 We step one node over to the next node in the list and continue the loop
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now let’s examine the actual IF statement:

 What is obvious is that we are checking if some data value is equal 
to target
 But what data value?  Or what node?
 help_ptr->next->data says to look at the data value in the 

node IMMEDIATELY following the one that help_ptr points to
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now let’s examine the actual IF statement:

 Example:
 If help_ptr is currently pointing to node # 87
 Then help_ptr->next->data says to look at the data value 

at node # 88.
 We compare this value to target
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now let’s examine the actual IF statement:

 So if our target is found at node # 12 (for example)
 Does help_ptr point to that node?

 NO!
 At that point, help_ptr will be pointing to node # 11
 help_ptr->next will be pointing to the node we want to delete
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now let’s examine the actual IF statement:

 So again, the IF statement says:
 IF the data at the node FOLLOWING the one that help_ptr

points to is equal to our target value
 Then we enter the IF statement and execute those four lines of 

code
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 help_ptr->next is pointing to the node we want to delete
 We will need to free that memory
 At fist glance, you may think we could just type

 free(help_ptr->next)
 Would that work?  And if so, what problem arises?
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 If we immediately type free(help_ptr->next)
 That will delete the correct node!

 BUT, remember, we need to make the connections from the node 
before it to the node after it
 ONLY  way to reference the node after it is via help_ptr->next
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Example:
 help_ptr points to node # 11
 help_ptr->next points to node # 12 (the node we want to delete)
 Of course, node # 12 is linked to node # 13
 And once we delete node # 12, node # 11 must link to node # 13
 If we go ahead and delete node # 12, what happens?
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Example:
 If we delete node # 12,
 We will have lost our connection (next pointer) to node # 13

 cuz that pointer is saved in the next of node # 12
 Well why is that a problem?
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Example:
 This is a problem because node # 11 needs to point to node # 

13
 The address of node # 13 is saved in the next of node # 12
 So if we delete node # 12 immediately, we lose that address
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 So we SAVE the address stored in help_ptr->next into the 
pointer we created earlier, node2delete
 We will free that space in a bit
 BUT first, we need to use that node to refer to the next node in the 

list (after the one to be deleted)
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Look at the 2nd statement:
 help_ptr->next = help_ptr->next->next;

 This says, look TWO nodes AFTER where help_ptr points to
 Take the address of that node and save it into help_ptr->next
 What does this effectively do?
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Look at the 2nd statement:
 For example, say help_ptr points to node # 11.
 Therefore, help_ptr->next->next points to node # 13
 This line says take the address of node # 13 and store it in the 
next of node # 11.  This BYPASSES node # 12.
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Deleting Nodes (code)
// PREVIOUS CODE WAS HERE

while (help_ptr->next != NULL) {
if (help_ptr->next->data == target) {

node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}

In detail:
 Now look at the code inside the IF statement (target found)

 Now that we’re done updating the pointers
 Meaning we no longer need the to-be-deleted node

 We free the space allocated to that node
 And finally, we RETURN the head pointer (list) to main
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Deleting Nodes (code)
struct ll_node* delete(struct ll_node *list, int target) {

struct ll_node *help_ptr, *node2delete;
help_ptr = list;
if (help_ptr != NULL) {

if (help_ptr->data == target) {
list = help_ptr->next;
free(help_ptr);
return list;

}
while (help_ptr->next != NULL) {

if (help_ptr->next->data == target) {
node2delete = help_ptr->next;
help_ptr->next = help_ptr->next->next;
free(node2delete);   
return list

}
help_ptr = help_ptr->next;

}
}
return list;

}

The last possible line to execute is this return list.

When does this execute?

Either:
a) When there are no nodes in the list from the 

beginning
 Thus we never even enter the outer IF 

statement
b) We traversed the ENTIRE list within the while 

loop and could not find the node to delete
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Linked Lists:  Basic Operations

 What we’ve covered thus far:
 Adding nodes
 Deleting nodes
 And in the process of both of these:

 Searching a list for nodes
 We did this when we traverse the list searching for our 

spot to insert/delete

 Traversing a list
 Printing a list
 Guess what?

 That just about covers it.  You are ready for Program #2.
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Linked Lists:  Deleting Nodes

WASN’T
THAT

AMAZING!
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Daily Demotivator



Computer Science Department
University of Central Florida
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