(OF 3502 ,_«*/g i /202
(966’”@7‘;} /179« Arel VSR (O o~ Sec 24
ol £1) excu)

(2 Rewmng Relobo- s
Cowers(n) S

—(—,—ocw@ (m ~) ~
97’ "t
—TEM/VS (2=l >/

LQP ((’/)) = # Sifi/of-/mufz’% Lo Siine Fovas
A Hono puz2le w2 a0 FieES

T(r) = Tln-1)+ | + Tin- ’) T(e)=©

T(n) = 2U) * I
| Tlr-1)=2T~2D+]

= L-}T n-2) T 7

| chn'g)?!j?g
8T(n-3)+ 43

= @j{‘ws)ﬁ
Abler ke skpss 2 T(nwe) + (%1), et k= and

= ;{m Tla-n) * (2"-1)

_ n "
s Aot
— h_{<

)

Summer 2021 Algorithms and Analysis Tools Exam, Part A

Name:
UCFID:
NID:

1) (5 pts) ANL (Algorithm Analysis)

Given an array, vals, of size n, one can determine the sum of the elements in the array from index i
through index j (i £j), inclusive, simply by running a for loop through the elements:

int sum = 0;
for (int z=i; z<=73; z++)
sum += vals[z];

This type of sum is known as a contiguous subsequence sum.

Note: There are more efficient ways to do this if many sums of this format need to be determined, but
for the purposes of this problem, assume that this is how such a sum is determined.

(a) (3 pts) What is the worst case run time of answering q questions about contiguous subsequence sums
on an array of size n? Express your answer in Big-Oh notation, in terms of both n and q. Give a brief
justification for your answer.

~ -

. . j P - ; = Y ATy, —7
) 2. C PR ~ v AN St Ce Co i o — O A —7)
e tm/n] € LZ; ng{/y AT S > > « AN
oand v O(n) Nln-Pme.
P

lo ansuwer 7 Gweri=k L=S/ (ke Voo Tone ¢

(b) (2 pts) What is the best case run time of answering q questions about contiguous subsequence sums

on an array of size n? Express your answer in Big-Oh notation, in terms of both m and q. Give a brief

justification for your answer.
N

Boch cesr Singh Guery s 725,50 OU) ter
One Guary

Best wSe O Guerres s

Page 2 of 4

Spring 2020 Algorithms and Analysis Tools Exam, Part A
1) (5 pts) ANL (Algorithm Analysis)

What is the best and worst case runtime for the following algorithm, in terms of the input parameter n?
Give a brief explanation for your answers.

int foo(int * arr, int n)/{

if (n == 0)
return 0;

for (i = 0; 1 < n; 1i++)
if (arr[i] > arr[j])
j = i;
int nlen = n - j - 1;
return arr[j] + foo(arr + j + 1, nLen);
}
f] v »Qvi oy y
Bl cage = J=rnl on [T o0 cnd

A f
e only 9o frv B loge o

Lok Gge =) =0 uey i, |
we | ooE AN Tl S /) C—C
V786 j.w,c Nn—1 fheS L
we (oo 7z N -2 +HeC

1 N (n+) j-’\ 2
= - (’: _ LU(W)7

~
-

= O

Page 2 of 4

9 bo wes
ISt ke howe 9old coms
Aslht” Does box x heve & 9od 0 ?

Onley allowd +o 9et 2 no ansiere
Uhat's T hegt Sﬁe@y Yo deterr,, e /(,?

i Z 3 ZJQ /43/% C{B{)/% boxes
A |- 7 \)77, 2/47/3\/;/
Ut Yoo Get our [/ SF
f) NY.
Leté seq £ MV = yes
Jn (wr)dn =vo.

“Thewr 98 v 0rSer
L, i r2

MQX # gushons < Jn + U :O[/}T)
?Syvore Root Dewormposibor

Summer 2020 Algorithms and Analysis Tools Exam, Part A

Name:
UCFID:
NID:

1) (10 pts) ANL (Algorithm Analysis)

There is a very long corridor of rooms, labeled 1 through n, from left to right. It is reputed that in the
very last room, room #, there is the Treasure of the Golden Knight. Unfortunately, you don't know what
n is equal to. Whenever you are in a particular room, you are allowed to ask questions of the form, "Is
there a room 2* slots to the right of my current location?", where k is a non-negative integer. For a fee,
Knightro, an omnipresent, omnipotent, omniscient knight, will answer your question correctly, with
either "yes" or "no." After you ask 1 or more questions from a single room, Knightro will move you, for
free, to any of the rooms you asked a question about for which he replied "yes." Your goal is to get to
room n by asking as few questions as possible, to reduce the fee that you pay Knightro. Devise a
strategy to find the value of n and clearly outline this strategy. How many questions, in terms of n, will
your strategy use, in the worst case? Answer, with proof, this last question with a Big-Oh bound in terms
of n. (Note: Any strategy that works will be given some credit. The amount of credit given will be
based on how efficient your strategy is, in relation to the intended solution.)

q:)a

B/z/)cwy Sest |,

})M"S&f“‘yl' (0(//‘) 4

e (T

bineechb (e,

_ T > '
s ((q)‘*b P’i/‘ﬁ)]/@/Vt’
Aﬁe/}z Sles Tin)= | vl e
* Qn .
o o_k

Ne.o Repeatnce Reloho,

L —

a2 ot |, T o0
- 2)awe) o) [rae)
L) +00))+ O(»)

ﬁ’éﬂw 2(0))

=4 (2713 0(Z)) ~2(0e)

= 9~—lg’)f O(~) + Z/O(W))
(eT(® 300 |

T(4)2%) 2]
T(£)-20)r)

N f\) /
Ater It Skepe et Zx ~1, 12"
‘(.‘:ltk}}',m

‘('é&f ’G‘JJ//&/ '{Y%nS,
merse St

Fall 2021 Algorithms and Analysis Tools Exam, Part A
1) (10 pts) ANL (Algorithm Analysis)

Consider the following problem: You are given a set of weights, {wo, Wi, W2, ..., Wa1} and a target
weight T. The target weight is placed on one side of a balance scale. The problem is to determine if there
exists a way to use some subset of the weights to add on either side of the balance so that the scale will
perfectly balance or not. For example, if T = 12 and the set of weights was {6, 2, 19, 1}, then one
possible solution would be to place the weights 6 and 1 on the same side of the balance as 12 and place
the weight 19 on the other side.

Below is a function that solves this problem recursively, with a wrapper function to make the initial
recursive call. In terms of n, the size of the input array of weights, with proof, determine the worst case
run time of the wrapper function. (Note: Since only the run time must be analyzed, it's not necessary
to fully understand WHY the solution works. Rather, the analysis can be done just by looking at

the structure of the code.) \
int makeBalance (int weights|[], in‘&:int_ft@\{

return makeBalanceRec(weightsf\n, Q\, target)

} —— \.,. «‘i p—
int makeBalanceRec (int weights[], int n, int k, int target) {
V) «if (k == n) return target == 0; (&
-7“ _,,) Elnt left = makeBalanceRec(weights, n, k+1, target-weights[k]);
if (left) return 1; p
f/(‘)ﬁ int right = makeBalanceRec(weights, n, k+1, target+weights[k]);
UAA) T @U)if (right) return 1; Z
/(/,/))_.J return makeBalanceRec (weights, n, k+l, target);

/

eossh C«&e e
\(&’))“‘@_{Z-’IJ + CU) /

~3(31t2) ro0) [o)

—

[

) “ (o) + (3 oo
{ E% C KV\/%) + 'j %+’ |
= /ZTT(M 3} + (C?fgf / (Xi)/ o

X‘
Jy
&
D
vy
[
\)J

- D)

