Practice Questions for Week 7

1) An image processing algorithm takes $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time to run to filter an $\mathrm{n} x \mathrm{n}$ pixel picture. If it takes 8 seconds to process a 1024×1024 pixel picture, how long will it take to process a 1536×1536 pixel picture?
2) An algorithm to process an array of size n takes $O\left(n^{2}\right)$ time. If the algorithm takes 113 ms to process an array of size 10,000 how long will it take to process an array of size 100,000 , in seconds?
3) A search algorithm on an array of size n runs in $O(\lg n)$ time. If 200,000 searches on an array of size 2^{18} takes 20 ms , how long will 540,000 searches take on an array of size 2^{20} take, in milliseconds?
4) An algorithm to process a two dimensional array of size $n \times m$ takes $O(n m l g n)$ time. If the algorithm takes 1 second to process an array of size $n=2^{20}$ by $m=2^{5}$, how long will it take to process an array of size $\mathrm{n}=2^{25}$ by $\mathrm{m}=2^{9}$. Please express your answer in minutes and seconds, with the number of seconds in between 0 and 59, inclusive.
5) An algorithm processing an array of size n runs in $O(n \sqrt{n})$ time. For an array of size 10,000 the algorithm processes the array in 16 ms . How long would it be expected for the algorithm to take when processing an array of size 160,000 ? Please express your answer in seconds, writing out exactly three digits past the decimal.
6) Determine the following sum in terms of $\mathrm{n}: \sum_{i=1}^{2 n-1}(3 i-2)$.
7) Let a, b, c, and d, be positive integer constants with $a<b$. Without using the arithmetic sum formula, prove that

$$
\sum_{i=a}^{b}(c i+d)=\frac{(c(a+b)+2 d)(b-a+1)}{2}
$$

8) Determine the following summation in terms of n :

$$
\sum_{i=0}^{n}\left(\sum_{j=0}^{i-1} 2^{j}\right)
$$

9) Determine the following summation in terms of n (assume n is a positive integer 2 or greater), expressing your answer in the form $\mathrm{an}^{3}+\mathrm{bn}^{2}+\mathrm{cn}$, where a, b and c are rational numbers. (Hint: Try rewriting the summation into an equivalent form that generates less algebra when solving.)

$$
\sum_{i=n^{2}-3}^{n^{2}+n-4}(i+4)
$$

10) Use the iteration technique to determine a Big-Oh solution for the following recurrence relation:

$$
T(n)=4 T\left(\frac{n}{2}\right)+n^{2}, T(1)=1
$$

11) Solve the following recurrence relation defined for non-negative integers, n, using the iteration technique. Please solve the recurrence exactly, obtaining a closed-form solution for T(n), in terms of n.

$$
\begin{gathered}
T(n)=2 T(n-1)+2^{n}, \text { for } \mathrm{n}>0 \\
T(0)=1
\end{gathered}
$$

