COP 3502 - Computer Science I

Final Exam

 FALL 2002

Lecturer : Nihan Cicekli

Name: ______________________
12/9/02

1) (10 pts) Consider the following recursive function that computes Ackermann’s function for two nonnegative integers m and n:

int ackermann(int m, int n){

if (m == 0)

return n + 1;

else if (n == 0)

return ackermann(m-1,1);

else

return ackermann(m-1, ackermann(m,n-1));

}

Indicate the result of each of the following calls to this function:

a) ackermann(1,1). Answer: ____3__

b) ackermann(2,1). Answer: ______5_____
2) Answer the following questions about binary numbers.
a) (3 pts.)What is the decimal representation of the binary number 101110?

Answer: ___46________

b) (3 pts.) What is the binary representation of the decimal number 254?

Answer:___11111110________

3) (4 pts.) Calculate the following summation:

 ((2i + 2)

Answer:__462____

4) (10 pts.) Given the following preorder and inorder traversals of a binary tree, draw the tree.

Preorder:
A B C D E F G H I J

Inorder:
D C E F B A G I H J

A
/ \
B G
/ \

C H

/ \ / \

D E I J

\

F

5) (15 pts.) Suppose you’re given a queue that is known to contain only positive integers. Use only the fundamental queue operations (i.e. enqueue(), dequeue(), etc.) to write a code that replaces all occurrences of the positive integer num in the queue with the positive integer new. Other than doing this, the queue is to remain unchanged. Use the following declarations and function prototypes:

struct queueNode{

int data;

struct queueNode * next;

};

struct queue{

struct queueNode *front;

struct queueNode *rear;

};

void enqueue(struct queue *q, int value);

int dequeue(struct queue *q);

int isEmpty(struct queue q);

// Function replace_all_num

// This function replaces all occurrences of a given number

// in the queue with another number. If the queue is empty

// it doesn’t do anything.

// Inputs: A pointer to the queue (possibly empty) and two

// numbers.

// Outputs: Modified queue.

6) (10 pts.) Consider the following binary tree where the node structure is defined as:

struct tree_node{

int data;

struct tree_node *left_child;

struct tree_node *right_child;

};

 8

 / \

 3 9

/ \ \

 2 5 6

\ / \ / \

4 7 1 2 0

 / \

 10 11

Here is a function that takes in a pointer to struct tree_node and an integer pointer as its parameters:

void count(struct tree_node *p, int *cnt)

{

 if (p != NULL){

if (p->left_child != NULL || p->right_child != NULL){

 *cnt = *cnt + 1;

 printf(“%d, “, p->data);

}

count(p->left_child, cnt);

 count (p->right_child, cnt);

 }

}

And consider the following program segment:

int c = 0;

count(root,&c);

printf(“count = %d\n”, c));

where root is pointing to the binary tree given above. What is the output of this program segment?

Answer:

8, 3, 2, 5, 7, 9, 6, count = 7
7) Answer the following questions about algorithmic complexity:

a) (3 pts.) Do a big-O analysis for the efficiency of the following fragment of C code.

int N,j,k,sum = 0;

scanf(“%d”,&N);

for(j=0; j < N; j++){

 for(k=0; k < j; k++) {

 sum = sum + j * k;

 }

}

Answer: O(N2)
b) (2 pts.) The following algorithm performs the assignment statement 100 times, regardless of the amount of data input. Provide a big-O classification of the algorithm that reflects the efficiency of the algorithm.

int N,j,k,sum = 0;

scanf(“%d”,&N);

for(j=0; j < 10; j++){

 for(k=0; k < 10; k++) {

 sum = sum + N;

 }

}

Answer: ___O(1) ____

c) (5 pts.) Algorithm A runs in O(log2n) time, and for an input size of 16, the algorithm runs in 12 milliseconds. How long can you expect it to take to run on an input size of 64?

Answer: 18 ms

8) (15 pts.) Consider the quick sort algorithm that we discussed in class. Assume we inserted some tracer output statements in the quickSort function (see below in bold).

// Center element is chosen as pivot

int partition(int L[], int low, int high)

{ int pivot;

 int i, lastSmall;

 swap(L,low,(low+high)/2);

 pivot = L[low];

 lastSmall = low;

 for (i = low+1; i<=high; i++){

 if (L[i] < pivot) {

 lastSmall = lastSmall + 1;

 swap(L, lastSmall, i);

 }

 }

 swap(L, low, lastSmall);

 pivotLoc = lastSmall;

 return pivotLoc;

}

void quickSort(int L[], int low, int high)

{ int pivotLoc, k;

 if (low < high){

 pivotLoc = partition(L, low, high);

 printf(“pivot = %d :”, L[pivotloc]);

 for (k = low, k <= high, k++)

 printf(“%d ”, L[k]);

 printf(“\n”);

 quickSort(L, low, pivotLoc – 1);

 quickSort(L, pivotLoc + 1, high);

 }

}

Assume integer array a[5]={12, 8, 18, 30, 25} is declared. What output would be produced if we called quickSort as the following?

quicksort(a, 0, 4);

Answer:

pivot = 18 :12, 8, 18, 30, 25
pivot = 12 :8, 12

pivot = 30 :25, 30
9) (20 pts.) Imagine we have a dummy node at the beginning of a list. The dummy node does not carry any data. It is not the first data node; it is an empty node. The empty list will contain only the dummy node. The following figure shows a linked list with a dummy node.

[image: image1]
We can simplify most algorithms using a linked list with a dummy node at the beginning.

In solving this question, use the following type declaration:

struct node{

 int data;

 struct node *next;

};

a) Write the function addNode using a linked list with a dummy node.

b) Write the function deleteNode using a linked list with a dummy node.

Answer:

a)

[image: image2]
b)

void replace_all_num(struct queue *q, int num, int new)

{

	int temp;

 	enqueue(q, -999);

	temp = dequeue(q);

	while (temp!= -999){

		if (temp == num)

			enqueue(q,new);

		else

			enqueue(q,temp);

		temp = dequeue(q);

}

}

20

i =0

dummy

head

/* Deletes the node pointed by pNode after the node

 pointed by pCur. Head points to the dummy node.

 Preconditions: list may be empty or the node to be

 deleted may be the only node in the list. Deletion

 can be anywhere (beginning, middle or end) in the

 list. Consider each case separately then write the

 code.

 Postconditions: updated list.

*/

void deleteNode(struct node *head, struct node *pCur,

 struct node *pNode)

{

if (pNode !=NULL) {

	pCur->next = pNode->next;

	free (pNode);

}

}

/* Adds the new node pointed by pNew after the node

 pointed by pCur. Head points to the dummy node.

 Preconditions: list may be empty. Insertion can be

 anywhere (beginning, middle or end) in the list.

 Consider each case separately then write the code.

 Postconditions: new node appears after the node

 pointed by pCur.

*/

void addNode(struct node *head, struct node *pCur,

 struct node *pNew)

{

pNew->next = pCur->next;

pCur->next = pNew;

}

PAGE
8

