C Programming Language

Basic Text File access review notes.

Prepared by Dr. Leeson

A file is a data target or data source that resides on disk and is completely independent from your C program. A file on disk exists whether or not your program is active in memory. It has a name of its own and a location of its own.

In order to connect your C program to a file, you need to

1) declare a file pointer variable in your program

2) connect that file variable to the actual disk file with an fopen function call

3) remember to break the connection when you are finished with the file by an fclose function call.

In between steps 2 and 3, all communication between your program and the disk file is accomplished by referencing the file pointer variable and not by using the file’s disk name. The only place the file’s disk name is used is in the fopen function call.

The fopen function determines the mode of communication that your program will use in communicating with the file. The file can be opened for reading (using “r” mode) or opened for writing (using “w” mode). Let us assume that a text file named data.txt resides in the default directory on your disk drive. You want to open this file for reading (as an input source for your program). First, declare a file pointer variable:

FILE * infile;

Then in your code section, make an appropriate call to the fopen function.

infile = fopen(“data.txt”, “r”);

If your function call fails for any reason (misspelled name etc) the infile pointer will have the NULL value. If it succeeds, the value will not be NULL. This means that the open call can be placed in an if statement that checks for failure and notifies the person running your program as follows:

if (NULL == (infile = fopen (“data.txt”, “r”))) {

 printf(“\nError opening input file\n”);

 exit(0);

}
The above will gracefully terminate your program if the input file is not opened correctly and continue running if it is opened successfully.

Assuming it opened correctly, your program can now communicate with the file by referencing the file pointer infile.
Example:

To read a string variable called name from the file,

fscanf(infile, “%s”, name);

should work. There are other C functions that can read from a file opened in read mode. Most are listed in <stdio.h>
The use of fscanf is identical to that of scanf except for the new first argument. The first argument to fscanf must be a file pointer.

After you finish processing the file, close it with an appropriate call to the fclose function. The fclose function takes the file pointer as its only argument.

fclose (infile);

Now, suppose you want to open a file named output.txt to receive data from your program. Once again, you need a file pointer variable in your program to associate with the file.

FILE * outfile;

and an appropriate call to the function fopen to make the connection:

if (NULL == (outfile = fopen (“output.txt”, “w”))) {

 printf(“\nError opening output file\n”);

 exit(0);

}
It is important to note that this fopen command is potentially destructive. If a file with the same name exists on your disk in the default directory it will be destroyed by this call.

fopen with a request for write mode can fail if there are problems with the drive such as no more available space (disk is full).

Assuming the file opened successfully, the file pointer outfile is not NULL and is your program’s link to the file. You may now write to the file using the fprintf function with the file pointer as the first argument. This function operates identically to printf but, like fscanf, requires the file pointer argument.

fprintf(outfile, “\nThe value of the variable average is %f\n”, average);

There are other C functions that can write to a file that has been opened in write mode. Most are listed in <stdio.h>.

After you finish processing, be sure to close the output file with a call to fclose.

fclose(outfile);

This is even more important than closing a file that was opened in read mode. C writes output to buffers and, when it accumulates enough, writes the buffer to disk. If you forget to close an output file, the buffer may not flush and you may end up with a file on your disk with the right name of size 0. Closing the file properly sets the correct file size in the associated directory entry.

